天天看點

HanLP中人名識别分析詳解

在看源碼之前,先看幾遍論文《基于角色标注的中國人名自動識别研究》

關于命名識别的一些問題,可參考下列一些issue:

l ·名字識别的問題 #387

l ·機構名識别錯誤

l ·關于層疊HMM中文實體識别的過程

HanLP參考部落格:

詞性标注

層疊HMM-Viterbi角色标注模型下的機構名識别

分詞

在HMM與分詞、詞性标注、命名實體識别中說:

分詞:給定一個字的序列,找出最可能的标簽序列(斷句符号:[詞尾]或[非詞尾]構成的序列)。結巴分詞目前就是利用BMES标簽來分詞的,B(開頭),M(中間),E(結尾),S(獨立成詞)

分詞也是采用了維特比算法的動态規劃性質求解的,具體可參考:文本挖掘的分詞原理

角色觀察

以“唱首張學友的歌情已逝”為例,

先将起始頂點 始##始,角色标注為:NR.A 和 NR.K,頻次預設為1

iterator.next(); tagList.add(new EnumItem<NR>(NR.A, NR.K)); // 始##始 A K

HanLP中人名識别分析詳解

對于第一個詞“唱首”,它不存在于 nr.txt中,EnumItem<NR> nrEnumItem = PersonDictionary.dictionary.get(vertex.realWord);傳回null,于是根據它本身的詞性猜一個角色标注:

switch (vertex.guessNature()){

        case nr:

        case nnt:

    default:{

        nrEnumItem = new EnumItem<NR>(NR.A, PersonDictionary.transformMatrixDictionary.getTotalFrequency(NR.A));

    }

}

HanLP中人名識别分析詳解

由于"唱首"的Attribute為 nz 16,不是nr 和 nnt,故預設給它指定一個角色NR.A,頻率為nr.tr.txt中 NR.A 角色的總頻率。

此時,角色清單如下:

HanLP中人名識别分析詳解

接下來是頂點“張”,由于“張”在nr.txt中,是以PersonDictionary.dictionary.get(vertex.realWord)傳回EnumItem對象,直接将它加入到角色清單中:

HanLP中人名識别分析詳解

EnumItem<NR> nrEnumItem = PersonDictionary.dictionary.get(vertex.realWord);

tagList.add(nrEnumItem);

加入“張”之後的角色清單如下:

HanLP中人名識别分析詳解

“唱首張學友的歌情已逝” 整句的角色清單如下:

HanLP中人名識别分析詳解

至此,角色觀察 部分 就完成了。

總結一下,對句子進行角色觀察,首先是通過分詞算法将句子分成若幹個詞,然後對每個詞查詢人名詞典(PersonDictionary)。

若這個詞在人名詞典中(nr.txt),則記錄該詞的角色,所有的角色在com.hankcs.hanlp.corpus.tag.NR.java中定義。

若這個詞不在人名詞典中,則根據該詞的Attribute “猜一個角色”。在猜的過程中,有些詞在核心詞典中可能已經标注為nr或者nnt了,這時會做分裂處理。其他情況下則是将這個詞标上NR.A角色,頻率為 NR.A 在轉移矩陣中的總詞頻。

維特比算法(動态規劃)求解最優路徑

在上圖中,給每個詞都打上了角色标記,可以看出,一個詞可以有多個标記。而我們需要将這些詞選擇一條路徑最短的角色路徑。參考隐馬爾可夫模型維特比算法詳解

List<NR> nrList = viterbiComputeSimply(roleTagList);

//some code....

return Viterbi.computeEnumSimply(roleTagList, PersonDictionary.transformMatrixDictionary);

而這個過程,其實就是:維特比算法解碼隐藏狀态序列。在這裡,五元組是:

l 隐藏狀态集合 com.hankcs.hanlp.corpus.tag.NR.java 定義的各個人名标簽

l 觀察狀态集合 已經分好詞的各個tagList中元素(相當于分詞結果)

HanLP中人名識别分析詳解

l 轉移機率矩陣 由 nr.tr.txt 檔案生成得到。具體可參考:

l 發射機率 某個人名标簽(隐藏狀态)出現的次數 除以 所有标簽出現的總次數

Math.log((item.getFrequency(cur) + 1e-8) / transformMatrixDictionary.getTotalFrequency(cur)

l 初始狀态(始##始) 和 結束狀态(末##末)

HanLP中人名識别分析詳解

維特比解碼隐藏狀态的動态規劃求解核心代碼如下:

            for (E cur : item.labelMap.keySet())

            {

                double now = transformMatrixDictionary.transititon_probability[pre.ordinal()][cur.ordinal()] - Math.log((item.getFrequency(cur) + 1e-8) / transformMatrixDictionary.getTotalFrequency(cur));

                if (perfect_cost > now)

                {

                    perfect_cost = now;

                    perfect_tag = cur;

                }

            }

transformMatrixDictionary.transititon_probability[pre.ordinal()][cur.ordinal()] 是前一個隐藏狀态 pre.ordinal()轉換到目前隐藏狀态cur.ordinal()的轉移機率。Math.log((item.getFrequency(cur) + 1e-8) / transformMatrixDictionary.getTotalFrequency(cur)是目前隐藏狀态的發射機率。二者“相減”得到一個機率 儲存在double now變量中,然後通過 for 循環找出 目前觀察狀态 對應的 最可能的(perfect_cost最小) 隐藏狀态 perfect_tag。

至于為什麼是上面那個公式來計算轉移機率和發射機率,可參考論文:《基于角色标注的中國人名自動識别研究》

在上面例子中,得到的最優隐藏狀态序列(最優路徑)K->A->K->Z->L->E->A->A 如下:

nrList = {LinkedList@1065} size = 8

"K" 始##始

"A" 唱首

"K" 張

"Z" 學友

"L" 的

"E" 歌

"A" 情已逝

"A" 末##末

例如:

​隐藏狀态---觀察狀态

"K"----------始##始

最大比對

有了最優隐藏序列:KAKZLEAA,接下來就是:後續的“最大比對處理”了。

        PersonDictionary.parsePattern(nrList, pWordSegResult, wordNetOptimum, wordNetAll);

在最大比對之前,會進行“模式拆分”。在com.hankcs.hanlp.corpus.tag.NR.java 定義了隐藏狀态的具體含義。比如說,若最優隐藏序列中 存在 'U' 或者 'V',

U Ppf 人名的上文和姓成詞 這裡【有關】天培的壯烈

V Pnw 三字人名的末字和下文成詞 龔學平等上司, 鄧穎【超生】前

則會做“拆分處理”

switch(nr)

{

    case U:

        //拆分成K B

    case V:

        //視情況拆分

拆分完成之後,重新得到一個新的隐藏序列(模式)

String pattern = sbPattern.toString();

接下來,就用AC自動機進行最大模式比對了,并将比對的結果存儲到“最優詞網”中。當然,在這裡就可以自定義一些針對特定應用的 識别處理規則

trie.parseText(pattern, new AhoCorasickDoubleArrayTrie.IHit<NRPattern>(){

    //.....

    wordNetOptimum.insert(offset, new Vertex(Predefine.TAG_PEOPLE, name, ATTRIBUTE, WORD_ID), wordNetAll);

将識别出來的人名儲存到最優詞網後,再基于最優詞網調用一次維特比分詞算法,得到最終的分詞結果---細分結果。

            if (wordNetOptimum.size() != preSize)

                vertexList = viterbi(wordNetOptimum);

                if (HanLP.Config.DEBUG)

                    System.out.printf("細分詞網:\n%s\n", wordNetOptimum);

總結

源碼上的人名識别基本上是按照論文中的内容來實作的。對于一個給定的句子,先進行下面三大步驟處理:

l 角色觀察

l 維特比算法解碼求解隐藏狀态(求解各個分詞 的 角色标記)

l 對角色标記進行最大比對(可做一些後處理操作)

最後,再使用維特比算法進行一次分詞,得到細分結果,即為最後的識别結果。

這篇文章裡面沒有寫維特比分詞算法的詳細過程,以及轉移矩陣的生成過程,以後有時間再補上。看源碼,對隐馬模型的了解又加深了一點,感受到了理論的東西如何用代碼一步步來實作。由于我也是初學,對源碼的了解不夠深入或者存在一些偏差,歡迎批評指正。

關于動态規劃的一個簡單示例,可參考:動态規劃之Fib數列類問題應用。

繼續閱讀