天天看點

高等數學1

關于反對幂三指

  • 指的是哪個留下來

在隐函數中求導數\({{dy}\over{dy}}\)

  • 不是衆生平等,而是将y看成是x的方程

對隐函數求微分

  • 衆生平等,加法兩側都看成一個單元,對自己的函數,求微分,遇到複合也一樣
  • 微分公式為\({{\partial{y}}\over{\partial{x}}}dy\)
  • 微分的近似

    \[

    dy \approx f^{'}(x_0)\Delta{x}

    \]

    dy = f(x + x_0) - f(x_0)

    f(x + x_0) \approx f(x_0) + f^{'}(x_0)\Delta{x}

    f(x) \approx f(x_0) + f^{'}(x_0)(x - x_0)

    • 以此類推

      f(x) \approx f(x_0) + f^{'}(x_0)(x - x_0) + {f^{''}(x_0)(x - x_0)^{2}\over{2!}} + \cdots + {f^{(n)}(x_0)(x - x_0)^{n}\over{n!}}

      • 上式已經非常接近泰勒公式了,添加上一個拉格朗日餘項即可

        f(x) \approx f(x_0) + f^{'}(x_0)(x - x_0) + {f^{''}(x_0)(x - x_0)^{2}\over{2!}} + \cdots + {f^{(n)}(x_0)(x - x_0)^{n}\over{n!}} + R_n(x)

        • 當\(x_0 = 0\)的時候就是麥克勞林公式
    • 無法估計可能用到的等式
      • \(tanx \approx x\)
      • \(sinx \approx x\)
      • \({(1 + x)}^{\alpha} \approx 1 + \alpha{x}\)
      • \(e^x \approx 1 + x\)
      • \(ln(1 + x) \approx x\)

洛必達公式

  • 洛必達是關于求極限的方法
  • \(0\over0\)或者\(\infty\over\infty\)

繼續閱讀