1 from tensorflow.contrib.keras.api.keras.preprocessing.image import ImageDataGenerator,img_to_array
2 from tensorflow.contrib.keras.api.keras.models import Sequential
3 from tensorflow.contrib.keras.api.keras.layers import Dense, Dropout, Activation, Flatten
4 from tensorflow.contrib.keras.api.keras.layers import Conv2D, MaxPooling2D
5 IMAGE_SIZE = 224
6 img_rows= 224
7 img_cols = 224
8 # 訓練圖檔大小
9 epochs = 50#原來是50
10 # 周遊次數
11 batch_size = 32
12 # 批量大小
13 nb_train_samples = 256*2
14 # 訓練樣本總數
15 nb_validation_samples = 64*2
16 # 測試樣本總數
17 train_data_dir = 'D:\\pycode\\learn\\data\\train_data\\'
18 validation_data_dir = 'D:\\pycode\\learn\\data\\test_data\\'
19 # 樣本圖檔所在路徑
20 FILE_PATH = 'age.h5'
21
22 train_datagen = ImageDataGenerator(
23 rescale=1. / 255,
24 horizontal_flip=True)
25
26 test_datagen = ImageDataGenerator(rescale=1. / 255)
27
28 train_generator = train_datagen.flow_from_directory(
29 train_data_dir,
30 target_size=(img_rows, img_cols),
31 batch_size=batch_size,
32 class_mode='categorical')
33
34 validation_generator = test_datagen.flow_from_directory(
35 validation_data_dir,
36 target_size=(img_rows, img_cols),
37 batch_size=batch_size,
38 class_mode='categorical')
39
40 # self.train = train_generator
41 # self.valid = validation_generator
42 print(validation_generator.class_indices)
檢視keras自動給檔案夾标号