标簽
PostgreSQL , bloom filter , 誤報率 , amcheck
https://github.com/digoal/blog/blob/master/201804/20180409_01.md#%E8%83%8C%E6%99%AF 背景
bloom filter是一個空間壓縮,機率資料結構,可以存儲超容量的資料集,用于判斷某個元素是否存在于資料集中。但是bloom filter存在一定的錯誤率(當判斷存在時,可能不存在,因為這個元素的bits可能被set了。但是當判斷發現元素不存在時就一定不存在。)
例如A元素對應1,19,200,21等4個BIT,當包含A元素時,這4個BIT一定為1。但是請注意,B元素可能對應1,18,300,20000幾個BIT,C元素。。。D元素等。其他元素可能包含了A元素的所有BIT,當其他元素都存在時,那麼A元素的幾個BIT都被填充了1,是以A元素雖然不存在,但是如果隻看BIT會被誤判為存在。
為了降低誤判率,有兩方面的考量
1、降低HASH沖撞
2、增加bloom的SIZE,減少沖撞
PostgreSQL 11提出了一個TEST插件,用于判斷bloom filter的誤判率。
https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=51bc271790eb234a1ba4d14d3e6530f70de92ab5Add Bloom filter implementation.
A Bloom filter is a space-efficient, probabilistic data structure that
can be used to test set membership. Callers will sometimes incur false
positives, but never false negatives. The rate of false positives is a
function of the total number of elements and the amount of memory
available for the Bloom filter.
Two classic applications of Bloom filters are cache filtering, and data
synchronization testing. Any user of Bloom filters must accept the
possibility of false positives as a cost worth paying for the benefit in
space efficiency.
This commit adds a test harness extension module, test_bloomfilter. It
can be used to get a sense of how the Bloom filter implementation
performs under varying conditions.
This is infrastructure for the upcoming "heapallindexed" amcheck patch,
which verifies the consistency of a heap relation against one of its
indexes.
Author: Peter Geoghegan
Reviewed-By: Andrey Borodin, Michael Paquier, Thomas Munro, Andres Freund
Discussion: https://postgr.es/m/CAH2-Wzm5VmG7cu1N-H=nnS57wZThoSDQU+F5dewx3o84M+jY=g@mail.gmail.com
https://github.com/digoal/blog/blob/master/201804/20180409_01.md#bloom-filter%E7%9A%84%E5%87%A0%E4%B8%AA%E5%BA%94%E7%94%A8 bloom filter的幾個應用
1、多字段任意等值組合查詢。
https://www.postgresql.org/docs/devel/static/bloom.htmlpostgres=# create extension bloom ;
CREATE EXTENSION
postgres=# create table test_bl (c1 int, c2 int, c3 int, c4 int);
CREATE TABLE
postgres=# insert into test_bl select random()*1000, random()*100, random()*3200, random()*10 from generate_series(1,10000000);
INSERT 0 10000000
postgres=# create index idx_test_bl on test_bl using bloom (c1,c2,c3,c4) with (length=41, col1=10, col2=10, col3=10, col4=10);
CREATE INDEX
postgres=# explain (analyze,verbose,timing,costs,buffers) select * from test_bl where c2=1 and c4=1;
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------------------
Bitmap Heap Scan on public.test_bl (cost=104036.28..111840.36 rows=10322 width=16) (actual time=38.285..47.650 rows=10035 loops=1)
Output: c1, c2, c3, c4
Recheck Cond: ((test_bl.c2 = 1) AND (test_bl.c4 = 1))
Rows Removed by Index Recheck: 703
Heap Blocks: exact=7377
Buffers: shared hit=11043
-> Bitmap Index Scan on idx_test_bl (cost=0.00..104033.70 rows=10322 width=0) (actual time=37.269..37.269 rows=10738 loops=1)
Index Cond: ((test_bl.c2 = 1) AND (test_bl.c4 = 1))
Buffers: shared hit=3666
Planning Time: 0.104 ms
Execution Time: 48.989 ms
(11 rows)
postgres=# explain (analyze,verbose,timing,costs,buffers) select * from test_bl where c1=1;
QUERY PLAN
---------------------------------------------------------------------------------------------------------------------------------
Bitmap Heap Scan on public.test_bl (cost=79036.18..86607.87 rows=9936 width=16) (actual time=32.485..56.025 rows=9933 loops=1)
Output: c1, c2, c3, c4
Recheck Cond: (test_bl.c1 = 1)
Rows Removed by Index Recheck: 33342
Heap Blocks: exact=12922
Buffers: shared hit=16588
-> Bitmap Index Scan on idx_test_bl (cost=0.00..79033.70 rows=9936 width=0) (actual time=30.737..30.737 rows=43275 loops=1)
Index Cond: (test_bl.c1 = 1)
Buffers: shared hit=3666
Planning Time: 0.078 ms
Execution Time: 57.404 ms
(11 rows)
2、資料一緻性校驗。AMCHECK:
https://www.postgresql.org/docs/devel/static/amcheck.html 《PostgreSQL 10.0 preview 功能增強 - 增加access method CHECK接口amcheck》資料一緻性校驗,是要檢查HEAP裡面的TUPLE是否在INDEX中都存在,如果不使用BLOOM,那麼可能需要對HEAP的資料按索引接口重建一遍,然後再一一比對,效率可想而知會很低下。而使用bloom filter,可以将索引中的tuple轉換為bloom,然後再掃一遍HEAP即可,判斷每一個HEAP TUPLE是否在bloom中都存在。如果有不存在則報錯。
注意AMCHECK的heapallindexed 檢測也是有一定誤報率的,為了控制誤報,必須設定足夠大的maintenance_work_mem,每個TUPLE約使用2位元組(實際上9.6個BIT)隻要滿足這個需求,就可以将誤差控制在2%左右。
The summarizing structure is bound in size by maintenance_work_mem. In order to ensure that there is no more than a 2% probability of failure to detect an inconsistency for each heap tuple that should be represented in the index, approximately 2 bytes of memory are needed per tuple. As less memory is made available per tuple, the probability of missing an inconsistency slowly increases. This approach limits the overhead of verification significantly, while only slightly reducing the probability of detecting a problem, especially for installations where verification is treated as a routine maintenance task. Any single absent or malformed tuple has a new opportunity to be detected with each new verification attempt.
這兩類應用,為了提高效率,降低誤判率。都需要考慮前面提到的幾個因素:
2、給定足夠大的BLOOM SIZE
3、是不是誤判率為0就最好呢?不一定,因為誤判率0的情況下,BLOOM本身就會變得很大,通常控制在
1 ~ 2%
之間即可。
https://github.com/digoal/blog/blob/master/201804/20180409_01.md#test_bloomfilter%E6%8F%92%E4%BB%B6%E4%BB%8B%E7%BB%8D test_bloomfilter插件介紹
1 test_bloomfilter overview
2 =========================
3
4 test_bloomfilter is a test harness module for testing Bloom filter library set
5 membership operations. It consists of a single SQL-callable function,
6 test_bloomfilter(), plus a regression test that calls test_bloomfilter().
7 Membership tests are performed against a dataset that the test harness module
8 generates.
9
10 The test_bloomfilter() function displays instrumentation at DEBUG1 elog level
11 (WARNING when the false positive rate exceeds a 1% threshold). This can be
12 used to get a sense of the performance characteristics of the Postgres Bloom
13 filter implementation under varied conditions.
14
15 Bitset size
16 -----------
17
18 The main bloomfilter.c criteria for sizing its bitset is that the false
19 positive rate should not exceed 2% when sufficient bloom_work_mem is available
20 (and the caller-supplied estimate of the number of elements turns out to have
21 been accurate). A 1% - 2% rate is currently assumed to be suitable for all
22 Bloom filter callers.
23
24 With an optimal K (number of hash functions), Bloom filters should only have a
25 1% false positive rate with just 9.6 bits of memory per element. The Postgres
26 implementation's 2% worst case guarantee exists because there is a need for
27 some slop due to implementation inflexibility in bitset sizing. Since the
28 bitset size is always actually kept to a power of two number of bits, callers
29 can have their bloom_work_mem argument truncated down by almost half.
30 In practice, callers that make a point of passing a bloom_work_mem that is an
31 exact power of two bitset size (such as test_bloomfilter.c) will actually get
32 the "9.6 bits per element" 1% false positive rate.
33
34 Testing strategy
35 ----------------
36
37 Our approach to regression testing is to test that a Bloom filter has only a 1%
38 false positive rate for a single bitset size (2 ^ 23, or 1MB). We test a
39 dataset with 838,861 elements, which works out at 10 bits of memory per
40 element. We round up from 9.6 bits to 10 bits to make sure that we reliably
41 get under 1% for regression testing. Note that a random seed is used in the
42 regression tests because the exact false positive rate is inconsistent across
43 platforms. Inconsistent hash function behavior is something that the
44 regression tests need to be tolerant of anyway.
45
46 test_bloomfilter() SQL-callable function
47 ========================================
48
49 The SQL-callable function test_bloomfilter() provides the following arguments:
50
51 * "power" is the power of two used to size the Bloom filter's bitset.
52
53 The minimum valid argument value is 23 (2^23 bits), or 1MB of memory. The
54 maximum valid argument value is 32, or 512MB of memory.
55
56 * "nelements" is the number of elements to generate for testing purposes.
57
58 * "seed" is a seed value for hashing.
59
60 A value < 0 is interpreted as "use random seed". Varying the seed value (or
61 specifying -1) should result in small variations in the total number of false
62 positives.
63
64 * "tests" is the number of tests to run.
65
66 This may be increased when it's useful to perform many tests in an interactive
67 session. It only makes sense to perform multiple tests when a random seed is
68 used.
https://github.com/digoal/blog/blob/master/201804/20180409_01.md#amcheck-heapallindexed%E5%8F%82%E6%95%B0%E5%BC%80%E5%90%AF%E4%BB%8B%E7%BB%8D amcheck heapallindexed參數開啟介紹
開啟bt_index_parent_check或bt_index_check檢測函數的heapallindexed開關後,會檢查HEAP與INDEX的一緻性,確定所有HEAP TUPLE都在INDEX中(使用bloom filter,存在誤差),是以結果一緻是假的,但是不一緻一定是真的。
首先将index tuple(包括索引表達式或字段的值(toast不包含
* we don't decompress/normalize toasted values as part of fingerprinting.
),以及對應的資料HEAP表裡面的行号)轉換為bloom 指紋,然後掃描heap,判斷heap中的每一條記錄(被索引的字段或表達式)都在INDEX中。
誤差與maintenance_work_mem參數相關,每條記錄2 byte,例如10000000條記錄(其中被索引的字段),maintenance_work_mem設定為保證2%左右的誤差。
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blobdiff;f=contrib/amcheck/verify_nbtree.c;h=a15fe21933b9a5b8baefedaa8f38e517d6c91877;hp=da518daea307aa6737f001d98d7aed00baf76413;hb=7f563c09f8901f6acd72cb8fba7b1bd3cf3aca8e;hpb=51bc271790eb234a1ba4d14d3e6530f70de92ab5+ * Per-tuple callback from IndexBuildHeapScan, used to determine if index has
+ * all the entries that definitely should have been observed in leaf pages of
+ * the target index (that is, all IndexTuples that were fingerprinted by our
+ * Bloom filter). All heapallindexed checks occur here.
+ *
+ * The redundancy between an index and the table it indexes provides a good
+ * opportunity to detect corruption, especially corruption within the table.
+ * The high level principle behind the verification performed here is that any
+ * IndexTuple that should be in an index following a fresh CREATE INDEX (based
+ * on the same index definition) should also have been in the original,
+ * existing index, which should have used exactly the same representation
+ *
+ * Since the overall structure of the index has already been verified, the most
+ * likely explanation for error here is a corrupt heap page (could be logical
+ * or physical corruption). Index corruption may still be detected here,
+ * though. Only readonly callers will have verified that left links and right
+ * links are in agreement, and so it's possible that a leaf page transposition
+ * within index is actually the source of corruption detected here (for
+ * !readonly callers). The checks performed only for readonly callers might
+ * more accurately frame the problem as a cross-page invariant issue (this
+ * could even be due to recovery not replaying all WAL records). The !readonly
+ * ERROR message raised here includes a HINT about retrying with readonly
+ * verification, just in case it's a cross-page invariant issue, though that
+ * isn't particularly likely.
+ *
+ * IndexBuildHeapScan() expects to be able to find the root tuple when a
+ * heap-only tuple (the live tuple at the end of some HOT chain) needs to be
+ * indexed, in order to replace the actual tuple's TID with the root tuple's
+ * TID (which is what we're actually passed back here). The index build heap
+ * scan code will raise an error when a tuple that claims to be the root of the
+ * heap-only tuple's HOT chain cannot be located. This catches cases where the
+ * original root item offset/root tuple for a HOT chain indicates (for whatever
+ * reason) that the entire HOT chain is dead, despite the fact that the latest
+ * heap-only tuple should be indexed. When this happens, sequential scans may
+ * always give correct answers, and all indexes may be considered structurally
+ * consistent (i.e. the nbtree structural checks would not detect corruption).
+ * It may be the case that only index scans give wrong answers, and yet heap or
+ * SLRU corruption is the real culprit. (While it's true that LP_DEAD bit
+ * setting will probably also leave the index in a corrupt state before too
+ * long, the problem is nonetheless that there is heap corruption.)
+ *
+ * Heap-only tuple handling within IndexBuildHeapScan() works in a way that
+ * helps us to detect index tuples that contain the wrong values (values that
+ * don't match the latest tuple in the HOT chain). This can happen when there
+ * is no superseding index tuple due to a faulty assessment of HOT safety,
+ * perhaps during the original CREATE INDEX. Because the latest tuple's
+ * contents are used with the root TID, an error will be raised when a tuple
+ * with the same TID but non-matching attribute values is passed back to us.
+ * Faulty assessment of HOT-safety was behind at least two distinct CREATE
+ * INDEX CONCURRENTLY bugs that made it into stable releases, one of which was
+ * undetected for many years. In short, the same principle that allows a
+ * REINDEX to repair corruption when there was an (undetected) broken HOT chain
+ * also allows us to detect the corruption in many cases.
+ */
+static void
+bt_tuple_present_callback(Relation index, HeapTuple htup, Datum *values,
+ bool *isnull, bool tupleIsAlive, void *checkstate)
+{
+ BtreeCheckState *state = (BtreeCheckState *) checkstate;
+ IndexTuple itup;
+
+ Assert(state->heapallindexed);
+
+ /*
+ * Generate an index tuple for fingerprinting.
+ *
+ * Index tuple formation is assumed to be deterministic, and IndexTuples
+ * are assumed immutable. While the LP_DEAD bit is mutable in leaf pages,
+ * that's ItemId metadata, which was not fingerprinted. (There will often
+ * be some dead-to-everyone IndexTuples fingerprinted by the Bloom filter,
+ * but we only try to detect the absence of needed tuples, so that's okay.)
+ *
+ * Note that we rely on deterministic index_form_tuple() TOAST compression.
+ * If index_form_tuple() was ever enhanced to compress datums out-of-line,
+ * or otherwise varied when or how compression was applied, our assumption
+ * would break, leading to false positive reports of corruption. For now,
+ * we don't decompress/normalize toasted values as part of fingerprinting.
+ */
+ itup = index_form_tuple(RelationGetDescr(index), values, isnull);
+ itup->t_tid = htup->t_self;
+
+ /* Probe Bloom filter -- tuple should be present */
+ if (bloom_lacks_element(state->filter, (unsigned char *) itup,
+ IndexTupleSize(itup)))
+ ereport(ERROR,
+ (errcode(ERRCODE_DATA_CORRUPTED),
+ errmsg("heap tuple (%u,%u) from table \"%s\" lacks matching index tuple within index \"%s\"",
+ ItemPointerGetBlockNumber(&(itup->t_tid)),
+ ItemPointerGetOffsetNumber(&(itup->t_tid)),
+ RelationGetRelationName(state->heaprel),
+ RelationGetRelationName(state->rel)),
+ !state->readonly
+ ? errhint("Retrying verification using the function bt_index_parent_check() might provide a more specific error.")
+ : 0));
+
+ state->heaptuplespresent++;
+ pfree(itup);
+}
+
+ /*
+ * * Check whether heap contains unindexed/malformed tuples *
+ */
+ if (state->heapallindexed)
+ {
+ IndexInfo *indexinfo = BuildIndexInfo(state->rel);
+ HeapScanDesc scan;
+
+ /*
+ * Create our own scan for IndexBuildHeapScan(), rather than getting it
+ * to do so for us. This is required so that we can actually use the
+ * MVCC snapshot registered earlier in !readonly case.
+ *
+ * Note that IndexBuildHeapScan() calls heap_endscan() for us.
+ */
+ scan = heap_beginscan_strat(state->heaprel, /* relation */
+ snapshot, /* snapshot */
+ 0, /* number of keys */
+ NULL, /* scan key */
+ true, /* buffer access strategy OK */
+ true); /* syncscan OK? */
+
+ /*
+ * Scan will behave as the first scan of a CREATE INDEX CONCURRENTLY
+ * behaves in !readonly case.
+ *
+ * It's okay that we don't actually use the same lock strength for the
+ * heap relation as any other ii_Concurrent caller would in !readonly
+ * case. We have no reason to care about a concurrent VACUUM
+ * operation, since there isn't going to be a second scan of the heap
+ * that needs to be sure that there was no concurrent recycling of
+ * TIDs.
+ */
+ indexinfo->ii_Concurrent = !state->readonly;
+
+ /*
+ * Don't wait for uncommitted tuple xact commit/abort when index is a
+ * unique index on a catalog (or an index used by an exclusion
+ * constraint). This could otherwise happen in the readonly case.
+ */
+ indexinfo->ii_Unique = false;
+ indexinfo->ii_ExclusionOps = NULL;
+ indexinfo->ii_ExclusionProcs = NULL;
+ indexinfo->ii_ExclusionStrats = NULL;
+
+ elog(DEBUG1, "verifying that tuples from index \"%s\" are present in \"%s\"",
+ RelationGetRelationName(state->rel),
+ RelationGetRelationName(state->heaprel));
+
+ IndexBuildHeapScan(state->heaprel, state->rel, indexinfo, true,
+ bt_tuple_present_callback, (void *) state, scan);
+
+ ereport(DEBUG1,
+ (errmsg_internal("finished verifying presence of " INT64_FORMAT " tuples from table \"%s\" with bitset %.2f%% set",
+ state->heaptuplespresent, RelationGetRelationName(heaprel),
+ 100.0 * bloom_prop_bits_set(state->filter))));
+
+ if (snapshot != SnapshotAny)
+ UnregisterSnapshot(snapshot);
+
+ bloom_free(state->filter);
+ }
https://github.com/digoal/blog/blob/master/201804/20180409_01.md#test_bloomfilter%E4%BD%BF%E7%94%A8%E4%BE%8B%E5%AD%90 test_bloomfilter使用例子
cd postgresql-11devel/src/test/modules/test_bloomfilter/
USE_PGXS=1 make
USE_PGXS=1 make install
postgres=# create extension test_bloomfilter ;
CREATE EXTENSION
postgres=# \df test_bloomfilter
List of functions
Schema | Name | Result data type | Argument data types | Type
--------+------------------+------------------+----------------------------------------------------------------------------------------------+------
public | test_bloomfilter | void | power integer, nelements bigint, seed integer DEFAULT '-1'::integer, tests integer DEFAULT 1 | func
(1 row)
Testing strategy
----------------
Our approach to regression testing is to test that a Bloom filter has only a 1%
false positive rate for a single bitset size (2 ^ 23, or 1MB). We test a
dataset with 838,861 elements, which works out at 10 bits of memory per
element. We round up from 9.6 bits to 10 bits to make sure that we reliably
get under 1% for regression testing. Note that a random seed is used in the
regression tests because the exact false positive rate is inconsistent across
platforms. Inconsistent hash function behavior is something that the
regression tests need to be tolerant of anyway.
postgres=# set client_min_messages ='debug';
SET
postgres=# select test_bloomfilter(23,8388610);
DEBUG: beginning test #1...
DEBUG: bloom_work_mem (KB): 1024
WARNING: seed: 1883349013 false positives: 5303072 (0.632175%) bitset 63.21% set
test_bloomfilter
------------------
(1 row)
postgres=# select test_bloomfilter(24,8388610);
DEBUG: beginning test #1...
DEBUG: bloom_work_mem (KB): 2048
WARNING: seed: 1590179470 false positives: 3299662 (0.393350%) bitset 39.34% set
test_bloomfilter
------------------
(1 row)
postgres=# select test_bloomfilter(25,8388610);
DEBUG: beginning test #1...
DEBUG: bloom_work_mem (KB): 4096
WARNING: seed: 1790559261 false positives: 1233267 (0.147017%) bitset 52.77% set
test_bloomfilter
------------------
(1 row)
這裡的
false positives: 1233267 (0.147017%)
就是誤差率。
postgres=# select 1233267/8388610.0;
?column?
------------------------
0.14701684784487537268
(1 row)
bitset 52.77% set
,表示4MB的bits中,有52.77%的bit位被設定了。
https://github.com/digoal/blog/blob/master/201804/20180409_01.md#amcheck%E4%BD%BF%E7%94%A8%E4%BE%8B%E5%AD%90 amcheck使用例子
postgres=# create unlogged table test_b (c1 int, c2 int, c3 int, c4 int, c5 timestamp);
CREATE TABLE
postgres=# insert into test_b select random()*10000000, random()*10000000,random()*10000000,random()*10000000,clock_timestamp() from generate_series(1,50000000);
INSERT 0 50000000
postgres=# create index idx_test_b on test_b using btree(c2,c3,c1,c5);
CREATE INDEX
postgres=# create index idx_test_b_1 on test_b using btree(mod(c2+c3,512),c4);
CREATE INDEX
需要多大的maintenance_work_mem,可以控制在2%左右的誤差。maintenance_work_mem越低,越容易掩蓋問題。是以至少要設定這麼大:
postgres=# select pg_size_pretty(50000000*2::numeric);
pg_size_pretty
----------------
95 MB
(1 row)
測試
postgres=# set client_min_messages ='debug';
SET
postgres=# create extension amcheck;
CREATE EXTENSION
postgres=# \timing
Timing is on.
postgres=# \set VERBOSITY verbose
postgres=# set client_min_messages ='debug';
SET
Time: 0.183 ms
postgres=# select * from bt_index_parent_check('idx_test_b', true);
DEBUG: 00000: verifying level 2 (true root level)
LOCATION: bt_check_level_from_leftmost, verify_nbtree.c:551
DEBUG: 00000: verifying 97 items on internal block 642
LOCATION: bt_target_page_check, verify_nbtree.c:723
DEBUG: 00000: verifying level 1
LOCATION: bt_check_level_from_leftmost, verify_nbtree.c:551
DEBUG: 00000: verifying 637 items on internal block 3
LOCATION: bt_target_page_check, verify_nbtree.c:723
DEBUG: 00000: verifying 637 items on internal block 641
LOCATION: bt_target_page_check, verify_nbtree.c:723
DEBUG: 00000: verifying 637 items on internal block 1279
LOCATION: bt_target_page_check, verify_nbtree.c:723
DEBUG: 00000: verifying 637 items on internal block 1916
LOCATION: bt_target_page_check, verify_nbtree.c:723
DEBUG: 00000: verifying 637 items on internal block 2553
LOCATION: bt_target_page_check, verify_nbtree.c:723
............
LOCATION: bt_target_page_check, verify_nbtree.c:723
DEBUG: 00000: verifying 818 items on leaf block 14538
LOCATION: bt_target_page_check, verify_nbtree.c:723
DEBUG: 00000: verifying 818 items on leaf block 14539
LOCATION: bt_target_page_check, verify_nbtree.c:723
ERROR: 57014: canceling statement due to user request
LOCATION: ProcessInterrupts, postgres.c:3037
Time: 14713.665 ms (00:14.714)
postgres=# set client_min_messages ='debug1';
SET
Time: 0.178 ms
bt_index_check優先查詢shared buffer中的block
postgres=# select * from bt_index_check('idx_test_b', true);
DEBUG: 00000: verifying that tuples from index "idx_test_b" are present in "test_b"
LOCATION: bt_check_every_level, verify_nbtree.c:491
DEBUG: 00000: finished verifying presence of 50000000 tuples from table "test_b" with bitset 47.89% set
LOCATION: bt_check_every_level, verify_nbtree.c:499
bt_index_check
----------------
(1 row)
Time: 42613.222 ms (00:42.613)
bt_index_parent_check堅決不使用shared buffer,而是所有資料都從磁盤讀取,(但是還有一層os fs cache) 可以檢查到磁盤問題。
postgres=# select * from bt_index_parent_check('idx_test_b', true);
DEBUG: 00000: verifying that tuples from index "idx_test_b" are present in "test_b"
LOCATION: bt_check_every_level, verify_nbtree.c:491
DEBUG: 00000: finished verifying presence of 50000000 tuples from table "test_b" with bitset 47.90% set
LOCATION: bt_check_every_level, verify_nbtree.c:499
bt_index_parent_check
-----------------------
(1 row)
Time: 45488.415 ms (00:45.488)
将maintenance_work_mem調小,可以看到bitsets被填充的比例也變高,雖然檢測時間變快了,但是也就意味着沖撞率變高,誤報率提高了。
postgres=# set maintenance_work_mem ='40MB';
SET
postgres=# select * from bt_index_parent_check('idx_test_b', true);
DEBUG: 00000: verifying that tuples from index "idx_test_b" are present in "test_b"
LOCATION: bt_check_every_level, verify_nbtree.c:491
DEBUG: 00000: finished verifying presence of 50000000 tuples from table "test_b" with bitset 52.53% set
LOCATION: bt_check_every_level, verify_nbtree.c:499
bt_index_parent_check
-----------------------
(1 row)
Time: 35367.433 ms (00:35.367)
postgres=# set maintenance_work_mem ='1MB';
SET
postgres=# select * from bt_index_parent_check('idx_test_b', true);
DEBUG: 00000: verifying that tuples from index "idx_test_b" are present in "test_b"
LOCATION: bt_check_every_level, verify_nbtree.c:491
DEBUG: 00000: finished verifying presence of 50000000 tuples from table "test_b" with bitset 99.74% set
LOCATION: bt_check_every_level, verify_nbtree.c:499
bt_index_parent_check
-----------------------
(1 row)
Time: 20992.851 ms (00:20.993)
https://github.com/digoal/blog/blob/master/201804/20180409_01.md#%E5%B0%8F%E7%BB%93 小結
bloom filter被廣泛應用于機率判斷,判定一個元素是否已存在bloom指紋中。
例如用來做索引和堆表的一緻性判定、用來實作多列任意組合等值過濾。
由于bloom filter通過bits與hash值映射來實作值是否存在的設定和判斷,是以存在沖撞的可能。當某個元素實際不存在于集合中,但是其對應的BITS都被設定後,會誤判為存在。而當元素被判定不存在于集合中時,絕對不存在。

為了降低bloom filter的誤報率
對應amcheck的heapallindexed與bloom索引接口,設定分别為:
maintenance_work_mem >= 記錄數*2 bytes
bloom index
woth (length, col1~col32)