天天看點

手把手:Python加密貨币價格預測9步走,視訊+代碼

YouTube網紅小哥Siraj Raval系列視訊又和大家見面啦!今天要講的是加密貨币價格預測,包含大量代碼,還用一個視訊詳解具體步驟,不信你看了還學不會!

點選觀看詳解視訊

時長22分鐘

有中文字幕

手把手:Python加密貨币價格預測9步走,視訊+代碼

預測加密貨币價格其實很簡單,用Python+Keras,再來一個循環神經網絡(确切說是雙向LSTM),隻需要9步就可以了!比特币以太坊價格預測都不在話下。

這9個步驟是:

  • 資料處理
  • 模組化
  • 訓練模型
  • 測試模型
  • 分析價格變化
  • 分析價格百分比變化
  • 比較預測值和實際資料
  • 計算模型評估名額
  • 結合在一起:可視化
手把手:Python加密貨币價格預測9步走,視訊+代碼

導入Keras、Scikit learn的metrics、numpy、pandas、matplotlib這些我們需要的庫。

## Keras for deep learning

from keras.layers.core import Dense, Activation, Dropout

from keras.layers.recurrent import LSTM

from keras.layers import Bidirectional

from keras.models import Sequential

## Scikit learn for mapping metrics

from sklearn.metrics import mean_squared_error

#for logging
import time

##matrix math
import numpy as np
import math

##plotting
import matplotlib.pyplot as plt

##data processing
import pandas as pd           

首先,要對資料進行歸一化處理。關于資料處理的原則,有張大圖,大家可以在大資料文摘公衆号背景對話框内回複“加密貨币”檢視高清圖。

手把手:Python加密貨币價格預測9步走,視訊+代碼

def load_data(filename, sequence_length):

"""

Loads the bitcoin data

Arguments:

filename -- A string that represents where the .csv file can be located

sequence_length -- An integer of how many days should be looked at in a row

Returns:

X_train -- A tensor of shape (2400, 49, 35) that will be inputed into the model to train it

Y_train -- A tensor of shape (2400,) that will be inputed into the model to train it

X_test -- A tensor of shape (267, 49, 35) that will be used to test the model's proficiency

Y_test -- A tensor of shape (267,) that will be used to check the model's predictions

Y_daybefore -- A tensor of shape (267,) that represents the price of bitcoin the day before each Y_test value

unnormalized_bases -- A tensor of shape (267,) that will be used to get the true prices from the normalized ones

window_size -- An integer that represents how many days of X values the model can look at at once

"""

#Read the data file

raw_data = pd.read_csv(filename, dtype = float).values

#Change all zeros to the number before the zero occurs

for x in range(0, raw_data.shape[0]):

for y in range(0, raw_data.shape[1]):

if(raw_data[x][y] == 0):

raw_data[x][y] = raw_data[x-1][y]

#Convert the file to a list

data = raw_data.tolist()

#Convert the data to a 3D array (a x b x c)

#Where a is the number of days, b is the window size, and c is the number of features in the data file

result = []

for index in range(len(data) - sequence_length):

result.append(data[index: index + sequence_length])

#Normalizing data by going through each window

#Every value in the window is divided by the first value in the window, and then 1 is subtracted

d0 = np.array(result)

dr = np.zeros_like(d0)

dr[:,1:,:] = d0[:,1:,:] / d0[:,0:1,:] - 1

#Keeping the unnormalized prices for Y_test

#Useful when graphing bitcoin price over time later

start = 2400

end = int(dr.shape[0] + 1)

unnormalized_bases = d0[start:end,0:1,20]

#Splitting data set into training (First 90% of data points) and testing data (last 10% of data points)

split_line = round(0.9 * dr.shape[0])

training_data = dr[:int(split_line), :]

#Shuffle the data

np.random.shuffle(training_data)

#Training Data

X_train = training_data[:, :-1]

Y_train = training_data[:, -1]

Y_train = Y_train[:, 20]

#Testing data

X_test = dr[int(split_line):, :-1]

Y_test = dr[int(split_line):, 49, :]

Y_test = Y_test[:, 20]

#Get the day before Y_test's price

Y_daybefore = dr[int(split_line):, 48, :]

Y_daybefore = Y_daybefore[:, 20]

#Get window size and sequence length

sequence_length = sequence_length

window_size = sequence_length - 1 #because the last value is reserved as the y value

return X_train, Y_train, X_test, Y_test, Y_daybefore, unnormalized_bases, window_size

手把手:Python加密貨币價格預測9步走,視訊+代碼

我們用到的是一個3層RNN,dropout率20%。

雙向RNN基于這樣的想法:時間t的輸出不僅依賴于序列中的前一個元素,而且還可以取決于未來的元素。比如,要預測一個序列中缺失的單詞,需要檢視左側和右側的上下文。雙向RNN是兩個堆疊在一起的RNN,根據兩個RNN的隐藏狀态計算輸出。

舉個例子,這句話裡缺失的單詞gym要檢視上下文才能知道(文摘菌:everyday?):

I go to the ( ) everyday to get fit.

def initialize_model(window_size, dropout_value, activation_function, loss_function, optimizer):

"""

Initializes and creates the model to be used


Arguments:

window_size -- An integer that represents how many days of X_values the model can look at at once

dropout_value -- A decimal representing how much dropout should be incorporated at each level, in this case 0.2

activation_function -- A string to define the activation_function, in this case it is linear

loss_function -- A string to define the loss function to be used, in the case it is mean squared error

optimizer -- A string to define the optimizer to be used, in the case it is adam


Returns:

model -- A 3 layer RNN with 100*dropout_value dropout in each layer that uses activation_function as its activation

function, loss_function as its loss function, and optimizer as its optimizer

"""
#Create a Sequential model using Keras

model = Sequential()

#First recurrent layer with dropout

model.add(Bidirectional(LSTM(window_size, return_sequences=True), input_shape=(window_size, X_train.shape[-1]),))

model.add(Dropout(dropout_value))

 #Second recurrent layer with dropout

model.add(Bidirectional(LSTM((window_size*2), return_sequences=True)))

model.add(Dropout(dropout_value))

 #Third recurrent layer

model.add(Bidirectional(LSTM(window_size, return_sequences=False)))

 #Output layer (returns the predicted value)

model.add(Dense(units=1))

 #Set activation function

model.add(Activation(activation_function))


#Set loss function and optimizer

model.compile(loss=loss_function, optimizer=optimizer)

return model           

這裡取batch size = 1024,epoch times = 100。我們需要最小化均方誤差MSE。

def fit_model(model, X_train, Y_train, batch_num, num_epoch, val_split):

"""

Fits the model to the training data


Arguments:

model -- The previously initalized 3 layer Recurrent Neural Network

X_train -- A tensor of shape (2400, 49, 35) that represents the x values of the training data

Y_train -- A tensor of shape (2400,) that represents the y values of the training data

batch_num -- An integer representing the batch size to be used, in this case 1024

num_epoch -- An integer defining the number of epochs to be run, in this case 100

val_split -- A decimal representing the proportion of training data to be used as validation data


Returns:

model -- The 3 layer Recurrent Neural Network that has been fitted to the training data

training_time -- An integer representing the amount of time (in seconds) that the model was training

"""
 #Record the time the model starts training

start = time.time()

 #Train the model on X_train and Y_train

model.fit(X_train, Y_train, batch_size= batch_num, nb_epoch=num_epoch, validation_split= val_split)

 #Get the time it took to train the model (in seconds)

training_time = int(math.floor(time.time() - start))
return model, training_time           
def test_model(model, X_test, Y_test, unnormalized_bases):

"""

Test the model on the testing data


Arguments:

model -- The previously fitted 3 layer Recurrent Neural Network

X_test -- A tensor of shape (267, 49, 35) that represents the x values of the testing data

Y_test -- A tensor of shape (267,) that represents the y values of the testing data

unnormalized_bases -- A tensor of shape (267,) that can be used to get unnormalized data points


Returns:

y_predict -- A tensor of shape (267,) that represnts the normalized values that the model predicts based on X_test

real_y_test -- A tensor of shape (267,) that represents the actual prices of bitcoin throughout the testing period

real_y_predict -- A tensor of shape (267,) that represents the model's predicted prices of bitcoin

fig -- A branch of the graph of the real predicted prices of bitcoin versus the real prices of bitcoin

"""
 #Test the model on X_Test

y_predict = model.predict(X_test)

 #Create empty 2D arrays to store unnormalized values

real_y_test = np.zeros_like(Y_test)

real_y_predict = np.zeros_like(y_predict)

 #Fill the 2D arrays with the real value and the predicted value by reversing the normalization process
for i in range(Y_test.shape[0]):

y = Y_test[i]

predict = y_predict[i]

real_y_test[i] = (y+1)*unnormalized_bases[i]

real_y_predict[i] = (predict+1)*unnormalized_bases[i]

 #Plot of the predicted prices versus the real prices

fig = plt.figure(figsize=(10,5))

ax = fig.add_subplot(111)

ax.set_title("Bitcoin Price Over Time")

plt.plot(real_y_predict, color = 'green', label = 'Predicted Price')

plt.plot(real_y_test, color = 'red', label = 'Real Price')

ax.set_ylabel("Price (USD)")

ax.set_xlabel("Time (Days)")

ax.legend()

return y_predict, real_y_test, real_y_predict, fig           
def price_change(Y_daybefore, Y_test, y_predict):

"""

Calculate the percent change between each value and the day before


Arguments:

Y_daybefore -- A tensor of shape (267,) that represents the prices of each day before each price in Y_test

Y_test -- A tensor of shape (267,) that represents the normalized y values of the testing data

y_predict -- A tensor of shape (267,) that represents the normalized y values of the model's predictions


Returns:

Y_daybefore -- A tensor of shape (267, 1) that represents the prices of each day before each price in Y_test

Y_test -- A tensor of shape (267, 1) that represents the normalized y values of the testing data

delta_predict -- A tensor of shape (267, 1) that represents the difference between predicted and day before values

delta_real -- A tensor of shape (267, 1) that represents the difference between real and day before values

fig -- A plot representing percent change in bitcoin price per day,

"""
 #Reshaping Y_daybefore and Y_test

Y_daybefore = np.reshape(Y_daybefore, (-1, 1))

Y_test = np.reshape(Y_test, (-1, 1))

 #The difference between each predicted value and the value from the day before

delta_predict = (y_predict - Y_daybefore) / (1+Y_daybefore)

#The difference between each true value and the value from the day before

delta_real = (Y_test - Y_daybefore) / (1+Y_daybefore)

 #Plotting the predicted percent change versus the real percent change

fig = plt.figure(figsize=(10, 6))

ax = fig.add_subplot(111)

ax.set_title("Percent Change in Bitcoin Price Per Day")

plt.plot(delta_predict, color='green', label = 'Predicted Percent Change')

plt.plot(delta_real, color='red', label = 'Real Percent Change')

plt.ylabel("Percent Change")

plt.xlabel("Time (Days)")

ax.legend()

plt.show()

return Y_daybefore, Y_test, delta_predict, delta_real, fig           
def binary_price(delta_predict, delta_real):

"""

Converts percent change to a binary 1 or 0, where 1 is an increase and 0 is a decrease/no change


Arguments:

delta_predict -- A tensor of shape (267, 1) that represents the predicted percent change in price

delta_real -- A tensor of shape (267, 1) that represents the real percent change in price


Returns:

delta_predict_1_0 -- A tensor of shape (267, 1) that represents the binary version of delta_predict

delta_real_1_0 -- A tensor of shape (267, 1) that represents the binary version of delta_real

"""
 #Empty arrays where a 1 represents an increase in price and a 0 represents a decrease in price
 delta_predict_1_0 = np.empty(delta_predict.shape)

delta_real_1_0 = np.empty(delta_real.shape)

#If the change in price is greater than zero, store it as a 1
 #If the change in price is less than zero, store it as a 0
for i in range(delta_predict.shape[0]):
if delta_predict[i][0] > 0:

delta_predict_1_0[i][0] = 1
else:

delta_predict_1_0[i][0] = 0
for i in range(delta_real.shape[0]):
if delta_real[i][0] > 0:

delta_real_1_0[i][0] = 1
else:

delta_real_1_0[i][0] = 0 

return delta_predict_1_0, delta_real_1_0           
def find_positives_negatives(delta_predict_1_0, delta_real_1_0):

"""

Finding the number of false positives, false negatives, true positives, true negatives


Arguments: 

delta_predict_1_0 -- A tensor of shape (267, 1) that represents the binary version of delta_predict

delta_real_1_0 -- A tensor of shape (267, 1) that represents the binary version of delta_real


Returns:

true_pos -- An integer that represents the number of true positives achieved by the model

false_pos -- An integer that represents the number of false positives achieved by the model

true_neg -- An integer that represents the number of true negatives achieved by the model

false_neg -- An integer that represents the number of false negatives achieved by the model

"""
 #Finding the number of false positive/negatives and true positives/negatives

true_pos = 0

false_pos = 0

true_neg = 0

false_neg = 0
for i in range(delta_real_1_0.shape[0]):

real = delta_real_1_0[i][0]

predicted = delta_predict_1_0[i][0]
if real == 1:
if predicted == 1:

true_pos += 1
else:

false_neg += 1

elif real == 0:
if predicted == 0:

true_neg += 1
else:

false_pos += 1
return true_pos, false_pos, true_neg, false_neg           
手把手:Python加密貨币價格預測9步走,視訊+代碼

def calculate_statistics(true_pos, false_pos, true_neg, false_neg, y_predict, Y_test):

"""

Calculate various statistics to assess performance

Arguments:

true_pos -- An integer that represents the number of true positives achieved by the model

false_pos -- An integer that represents the number of false positives achieved by the model

true_neg -- An integer that represents the number of true negatives achieved by the model

false_neg -- An integer that represents the number of false negatives achieved by the model

Y_test -- A tensor of shape (267, 1) that represents the normalized y values of the testing data

y_predict -- A tensor of shape (267, 1) that represents the normalized y values of the model's predictions

Returns:

precision -- How often the model gets a true positive compared to how often it returns a positive

recall -- How often the model gets a true positive compared to how often is hould have gotten a positive

F1 -- The weighted average of recall and precision

Mean Squared Error -- The average of the squares of the differences between predicted and real values

"""

precision = float(true_pos) / (true_pos + false_pos)

recall = float(true_pos) / (true_pos + false_neg)

F1 = float(2 * precision * recall) / (precision + recall)

#Get Mean Squared Error

MSE = mean_squared_error(y_predict.flatten(), Y_test.flatten())

return precision, recall, F1, MSE

終于可以看看我們的成果啦!

首先是預測價格vs實際價格:

y_predict, real_y_test, real_y_predict, fig1 = test_model(model, X_test, Y_test, unnormalized_bases)

#Show the plot

plt.show(fig1)           
手把手:Python加密貨币價格預測9步走,視訊+代碼

然後是預測的百分比變化vs實際的百分比變化,值得注意的是,這裡的預測相對實際來說波動更大,這是模型可以提高的部分:

Y_daybefore, Y_test, delta_predict, delta_real, fig2 = price_change(Y_daybefore, Y_test, y_predict)


#Show the plot

plt.show(fig2)           
手把手:Python加密貨币價格預測9步走,視訊+代碼

最終模型表現是這樣的:

Precision: 0.62

Recall: 0.553571428571

F1 score: 0.584905660377

Mean Squared Error: 0.0430756924477
           

怎麼樣,看完有沒有躍躍欲試呢?

原文釋出時間為:2018-05-4

本文作者:文摘菌

本文來自雲栖社群合作夥伴“

大資料文摘

”,了解相關資訊可以關注“

”。