天天看點

收藏 | 一文打盡AI、機器學習網絡資源!

昨天,谷歌剛剛上線的機器學習課程刷屏科技媒體頭條。激動過後,多數AI學習者會陷入焦慮:入坑人工智能,到底要從何入手?

的确,如今學習人工智能最大的困難不是找不到資料,更多同學的痛苦是:網上資源太多了,以至于沒法知道從哪兒開始搜尋,也沒法知道搜到什麼程度。

為了節省大家的時間,我們搜遍網絡把最好的免費資源彙總整理到這篇文章當中。這些連結夠你學上很久,而且你看完本文一定會再次驚歎:現在網上關于機器學習、深度學習和人工智能的資訊真的非常多。

本文羅列了以下幾個方面的學習資源,供大家收藏:知名研究人員、人工智能研究機構、視訊課程、部落格、Medium、書籍、YouTube、Quora、Reddit、GitHub、播客、新聞訂閱、科研會議、研究論文連結、教程以及各種小抄表。

研究人員

收藏 | 一文打盡AI、機器學習網絡資源!

許多著名的人工智能研究人員都在網絡上有很強的影響力。下面我列出了20個專家,也給出了能夠找到他們詳細資訊的網站。

Sebastian Thrun

http://robots.stanford.edu

Yann Lecun

http://yann.lecun.com

Nando de Freitas

http://www.cs.ubc.ca/~nando/

Andrew Ng

http://www.andrewng.org

Daphne Koller

http://ai.stanford.edu/users/koller/

Adam Coates

http://cs.stanford.edu/~acoates/

Jürgen Schmidhuber

http://people.idsia.ch/~juergen/

Geoffrey Hinton

http://www.cs.toronto.edu/~hinton/

Terry Sejnowski

http://www.salk.edu/scientist/terrence-sejnowski/

Michael Jordan

https://people.eecs.berkeley.edu/~jordan/

Peter Norvig

http://norvig.com

Yoshua Bengio

http://www.iro.umontreal.ca/~bengioy/yoshua_en/

Ian Goodfellow

http://www.iangoodfellow.com

Andrej Karpathy

http://karpathy.github.io

Richard Socher

http://www.socher.org

Demis Hassabis

http://demishassabis.com

Christopher Manning

https://nlp.stanford.edu/~manning/

Fei-Fei Li

http://vision.stanford.edu/people.html

François Chollet

https://scholar.google.com/citations?user=VfYhf2wAAAAJ&hl=en

Larry Carin

http://people.ee.duke.edu/~lcarin/

Dan Jurafsky

https://web.stanford.edu/~jurafsky/

Oren Etzioni

http://allenai.org/team/orene/

人工智能研究機構

收藏 | 一文打盡AI、機器學習網絡資源!

許多研究機構緻力于促進人工智能的研究與開發。下面我列出了一些機構的網站。

OpenAI(推特關注數12.7萬)

https://openai.com

DeepMind(推特關注數8萬)

https://deepmind.com

Google Research(推特關注數110萬)

https://research.googleblog.com

AWS AI(推特關注數140萬)

https://aws.amazon.com/blogs/ai/

Facebook AI Research

https://research.fb.com/category/facebook-ai-research-fair/

Microsoft Research(推特關注數34.1萬)

https://www.microsoft.com/en-us/research/

Baidu Research(推特關注數1.8萬)

http://research.baidu.com

IntelAI(推特關注數2千)

https://software.intel.com/en-us/ai-academy

AI²(推特關注數4.6千)

http://allenai.org

Partnership on AI(推特關注數5千)

https://www.partnershiponai.org

視訊課程

收藏 | 一文打盡AI、機器學習網絡資源!

網上也有大量的視訊課程和教程,其中很多都是免費的,還有一些付費的也很不錯,但是在這篇文章中我隻提供免費内容的連結。下面我列出的這些免費課程可以讓你學上好幾個月:

Coursera — Machine Learning (Andrew Ng)

https://www.coursera.org/learn/machine-learning#syllabus

Coursera — Neural Networks for Machine Learning (Geoffrey Hinton)

https://www.coursera.org/learn/neural-networks

Machine Learning (mathematicalmonk)

https://www.youtube.com/playlist?list=PLD0F06AA0D2E8FFBA

Practical Deep Learning For Coders (Jeremy Howard & Rachel Thomas)

http://course.fast.ai/start.html

Stanford CS231n — Convolutional Neural Networks for Visual Recognition (Winter 2016)

https://www.youtube.com/watch?v=g-PvXUjD6qg&list=PLlJy-eBtNFt6EuMxFYRiNRS07MCWN5UIA

斯坦福CS231n【中字】視訊,大資料文摘經授權翻譯

http://study.163.com/course/introduction/1003223001.htm

Stanford CS224n — Natural Language Processing with Deep Learning (Winter 2017)

https://www.youtube.com/playlist?list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6

Oxford Deep NLP 2017 (Phil Blunsom et al.)

https://github.com/oxford-cs-deepnlp-2017/lectures

牛津Deep NLP【中字】視訊,大資料文摘經授權翻譯

http://study.163.com/course/introduction/1004336028.htm

Reinforcement Learning (David Silver)

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Practical Machine Learning Tutorial with Python (sentdex)

https://www.youtube.com/watch?list=PLQVvvaa0QuDfKTOs3Keq_kaG2P55YRn5v&v=OGxgnH8y2NM

油管 YouTube

收藏 | 一文打盡AI、機器學習網絡資源!

YouTube上有很多頻道或者使用者都經常會釋出一些AI或者機器學習相關的内容,我把這些連結按照訂閱數/觀看數多少列示在下邊,這樣友善看出來哪個更受歡迎。

sendex(22.5萬訂閱,2100萬次觀看)

https://www.youtube.com/user/sentdex

Siraj Raval(14萬訂閱,500萬次觀看)

https://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A

Two Minute Papers(6萬訂閱,330萬次觀看)

https://www.youtube.com/user/keeroyz

DeepLearning.TV(4.2萬訂閱,140萬觀看)

https://www.youtube.com/channel/UC9OeZkIwhzfv-_Cb7fCikLQ

Data School(3.7萬訂閱,180萬次觀看)

https://www.youtube.com/user/dataschool

Machine Learning Recipes with Josh Gordon(32.4萬次觀看)

https://www.youtube.com/playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal

Artificial Intelligence — Topic(1萬訂閱)

https://www.youtube.com/channel/UC9pXDvrYYsHuDkauM2fLllQ

Allen Institute for Artificial Intelligence (AI2)(1.6千訂閱,6.9萬次觀看)

https://www.youtube.com/channel/UCEqgmyWChwvt6MFGGlmUQCQ

Machine Learning at Berkeley(634訂閱,4.8萬次觀看)

https://www.youtube.com/channel/UCXweTmAk9K-Uo9R6SmfGtjg

Understanding Machine Learning — Shai Ben-David(973訂閱,4.3萬次觀看)

https://www.youtube.com/channel/UCR4_akQ1HYMUcDszPQ6jh8Q

Machine Learning TV(455訂閱,1.1萬次觀看)

https://www.youtube.com/channel/UChIaUcs3tho6XhyU6K6KMrw

部落格

收藏 | 一文打盡AI、機器學習網絡資源!

雖然人工智能和機器學習現在這麼火,但是我很驚訝地發現相關部落客并沒有那麼多。可能是因為内容比較複雜,把有意義的部分整理出來需要花很大精力;也有可能是因為類似Quora這樣的平台比較多,專家們回答問題更友善也不需要花太多時間做詳細論述。

下面我會按照推特的關注數排序介紹一些部落客,他們一直在做人工智能相關的原創内容,而不隻是一些新聞摘要或者公司部落格。

Andrej Karpathy(推特關注數6.9萬)

i am trask(推特關注數1.4萬)

http://iamtrask.github.io

Christopher Olah(推特關注數1.3萬)

http://colah.github.io

Top Bots(推特關注數1.1萬)

http://www.topbots.com

WildML(推特關注數1萬)

http://www.wildml.com

Distill(推特關注數9千)

https://distill.pub

Machine Learning Mastery(推特關注數5千)

http://machinelearningmastery.com/blog/

FastML(推特關注數5千)

http://fastml.com

Adventures in NI(推特關注數5千)

https://joanna-bryson.blogspot.de

Sebastian Ruder(推特關注數3千)

http://sebastianruder.com

Unsupervised Methods(推特關注數1.7千)

http://unsupervisedmethods.com

Explosion(推特關注數1千)

https://explosion.ai/blog/

Tim Dettmers(推特關注數1千)

http://timdettmers.com

When trees fall…(推特關注數265)

http://blog.wtf.sg

ML@B(推特關注數80)

https://ml.berkeley.edu/blog/

Medium平台上的作者

收藏 | 一文打盡AI、機器學習網絡資源!

下面介紹到的是Medium上人工智能相關的頂級作者,按照2017年Mediumas的排行榜排序。

Robbie Allen

https://medium.com/@robbieallen

Erik P.M. Vermeulen

https://medium.com/@erikpmvermeulen

Frank Chen

https://medium.com/@withfries2

azeem

https://medium.com/@azeem

Sam DeBrule

https://medium.com/@samdebrule

Derrick Harris

https://medium.com/@derrickharris

Yitaek Hwang

https://medium.com/@yitaek

samim

https://medium.com/@samim

Paul Boutin

https://medium.com/@Paul_Boutin

Mariya Yao

https://medium.com/@thinkmariya

Rob May

https://medium.com/@robmay

Avinash Hindupur

https://medium.com/@hindupuravinash

書籍

收藏 | 一文打盡AI、機器學習網絡資源!

市面上有許多關于機器學習、深度學習和自然語言處理等方面的書籍,我隻列示了可以直接從網上免費獲得或者下載下傳的書籍。

機器學習

Understanding Machine Learning From Theory to Algorithms

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf

Machine Learning Yearning

http://www.mlyearning.org

A Course in Machine Learning

http://ciml.info

Machine Learning

https://www.intechopen.com/books/machine_learning

Neural Networks and Deep Learning

http://neuralnetworksanddeeplearning.com

Deep Learning Book

http://www.deeplearningbook.org

Reinforcement Learning: An Introduction

http://incompleteideas.net/sutton/book/the-book-2nd.html

Reinforcement Learning

https://www.intechopen.com/books/reinforcement_learning

自然語言處理

Speech and Language Processing (3rd ed. draft)

https://web.stanford.edu/~jurafsky/slp3/

Natural Language Processing with Python

http://www.nltk.org/book/

An Introduction to Information Retrieval

https://nlp.stanford.edu/IR-book/html/htmledition/irbook.html

數學

Introduction to Statistical Thought

http://people.math.umass.edu/~lavine/Book/book.pdf

Introduction to Bayesian Statistics

https://www.stat.auckland.ac.nz/~brewer/stats331.pdf

Introduction to Probability

https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/amsbook.mac.pdf

Think Stats: Probability and Statistics for Python programmers

http://greenteapress.com/wp/think-stats-2e/

The Probability and Statistics Cookbook

http://statistics.zone

Linear Algebra

http://joshua.smcvt.edu/linearalgebra/book.pdf

Linear Algebra Done Wrong

http://www.math.brown.edu/~treil/papers/LADW/book.pdf

Linear Algebra, Theory And Applications

https://math.byu.edu/~klkuttle/Linearalgebra.pdf

Mathematics for Computer Science

https://courses.csail.mit.edu/6.042/spring17/mcs.pdf

Calculus

https://ocw.mit.edu/ans7870/resources/Strang/Edited/Calculus/Calculus.pdf

Calculus I for Computer Science and Statistics Students

http://www.math.lmu.de/~philip/publications/lectureNotes/calc1_forInfAndStatStudents.pdf

Quora

收藏 | 一文打盡AI、機器學習網絡資源!

Quora已經成為人工智能和機器學習的重要資源,許多頂尖的研究人員會在上面回答問題。下面我列出了一些主要關于人工智能的話題,如果你想自定義你的Quora喜好,你可以選擇訂閱這些話題。記得去檢視每個話題下的FAQ部分(例如機器學習下常見問題解答),你可以看到Quora社群裡提供的一些常見問題清單。

計算機科學 (560萬關注)

https://www.quora.com/topic/Computer-Science

機器學習 (110萬關注)

https://www.quora.com/topic/Machine-Learning

人工智能 (63.5萬關注)

https://www.quora.com/topic/Artificial-Intelligence

深度學習 (16.7萬關注)

https://www.quora.com/topic/Deep-Learning

自然語言處理 (15.5 萬關注)

https://www.quora.com/topic/Natural-Language-Processing

機器學習分類(11.9萬關注)

https://www.quora.com/topic/Classification-machine-learning

通用人工智能(8.2萬 關注)

https://www.quora.com/topic/Artificial-General-Intelligence

卷積神經網絡 (2.5萬關注)

https://www.quora.com/topic/Convolutional-Neural-Networks-1?merged_tid=360493

計算語言學(2.3萬關注)

https://www.quora.com/topic/Computational-Linguistics

循環神經網絡(1.74萬關注)

https://www.quora.com/topic/Recurrent-Neural-Networks-RNNs

Reddit

收藏 | 一文打盡AI、機器學習網絡資源!

Reddit上的人工智能社群并沒有Quora上那麼活躍,但是還是有一些很不錯的話題。相對于Quora問答的形式,Reddit更适合于用來跟蹤最新的新聞和研究。下面是一些主要關于人工智能的Reddit話題,按照訂閱人數排序。

/r/MachineLearning (11.1萬訂閱)

https://www.reddit.com/r/MachineLearning

/r/robotics/ (4.3萬訂閱)

https://www.reddit.com/r/robotics/

/r/artificial (3.5萬訂閱)

https://www.reddit.com/r/artificial/

/r/datascience (3.4萬訂閱)

https://www.reddit.com/r/datascience

/r/learnmachinelearning (1.1萬訂閱)

https://www.reddit.com/r/learnmachinelearning/

/r/computervision (1.1萬訂閱)

https://www.reddit.com/r/computervision

/r/MLQuestions (8千訂閱)

https://www.reddit.com/r/MLQuestions

/r/LanguageTechnology (7千訂閱)

https://www.reddit.com/r/LanguageTechnology

/r/mlclass (4千訂閱)

https://www.reddit.com/r/mlclass

/r/mlpapers (4千訂閱)

https://www.reddit.com/r/mlpapers

Github

收藏 | 一文打盡AI、機器學習網絡資源!

人工智能社群的好處之一是大部分新項目都是開源的,并且能在GitHub上擷取到。同樣如果你想了解使用Python或者Juypter Notebooks來實作執行個體算法,GitHub上也有很多學習資源可以幫助到你。以下是一些GitHub項目:

機器學習(6千個項目)

https://github.com/search?o=desc&q=topic%3Amachine-learning+&s=stars&type=Repositories&utf8=

深度學習(3千個項目)

https://github.com/search?q=topic%3Adeep-learning&type=Repositories

Tensorflow (2千個項目)

https://github.com/search?q=topic%3Atensorflow&type=Repositories

神經網絡(1千個項目)

https://github.com/search?q=topic%3Aneural-network&type=Repositories

自然語言處理(1千個項目)

https://github.com/search?utf8=&q=topic%3Anlp&type=Repositories

播客

收藏 | 一文打盡AI、機器學習網絡資源!

人工智能相關的播客數量在不斷的增加,有些播客關注最新的新聞,有些關注教授相關知識。

Concerning AI

https://concerning.ai

his Week in Machine Learning and AI

https://twimlai.com

The AI Podcast

https://blogs.nvidia.com/ai-podcast/

Data Skeptic

http://dataskeptic.com

Linear Digressions

https://itunes.apple.com/us/podcast/linear-digressions/id941219323

Partially Derivative

http://partiallyderivative.com

O’Reilly Data Show

http://radar.oreilly.com/tag/oreilly-data-show-podcast

Learning Machines 101

http://www.learningmachines101.com

The Talking Machines

http://www.thetalkingmachines.com

Artificial Intelligence in Industry

http://techemergence.com

Machine Learning Guide

http://ocdevel.com/podcasts/machine-learnin

新聞訂閱

收藏 | 一文打盡AI、機器學習網絡資源!

如果你想追蹤最新的新聞和研究的話,種類漸增的每周新聞是一個不錯的選擇:其中大部分都包含相同的内容,是以訂閱兩三個就足夠。

The Exponential View

https://www.getrevue.co/profile/azeem

AI Weekly

http://aiweekly.co

Deep Hunt

https://deephunt.in

O’Reilly Artificial Intelligence Newsletter

http://www.oreilly.com/ai/newsletter.html

Machine Learning Weekly

http://mlweekly.com

Data Science Weekly Newsletter

https://www.datascienceweekly.org

Machine Learnings

http://subscribe.machinelearnings.co

Artificial Intelligence News

When trees fall…

https://meetnucleus.com/p/GVBR82UWhWb9

WildML

https://meetnucleus.com/p/PoZVx95N9RGV

Inside AI

https://inside.com/technically-sentient

Kurzweil AI

http://www.kurzweilai.net/create-account

Import AI

https://jack-clark.net/import-ai/

The Wild Week in AI

https://www.getrevue.co/profile/wildml

Deep Learning Weekly

http://www.deeplearningweekly.com

Data Science Weekly

KDnuggets Newsletter

http://www.kdnuggets.com/news/subscribe.html?qst

科研會議

收藏 | 一文打盡AI、機器學習網絡資源!

随着人工智能的普及,人工智能相關的科研會議數量也在不斷增加。我隻提了幾個主要的會議,沒列所有的。(當然會議并不是免費的!)

學術會議

NIPS (Neural Information Processing Systems)

https://nips.cc

ICML (International Conference on Machine Learning)

https://2017.icml.cc

KDD (Knowledge Discovery and Data Mining)

http://www.kdd.org

ICLR (International Conference on Learning Representations)

http://www.iclr.cc

ACL (Association for Computational Linguistics)

http://acl2017.org

EMNLP (Empirical Methods in Natural Language Processing)

http://emnlp2017.net

CVPR (Computer Vision and Pattern Recognition)

http://cvpr2017.thecvf.com

ICCV (International Conference on Computer Vision)

http://iccv2017.thecvf.com

專業會議

O’Reilly Artificial Intelligence Conference

https://conferences.oreilly.com/artificial-intelligence/

Machine Learning Conference (MLConf)

http://mlconf.com

AI Expo (North America, Europe, World)

https://www.ai-expo.net

AI Summit

https://theaisummit.com

AI Conference

https://aiconference.ticketleap.com/helloworld/

研究論文

收藏 | 一文打盡AI、機器學習網絡資源!

你可以在網上浏覽或者搜尋已經釋出的學術論文。

arXiv.org的主題類别

arXiv 是較早的預印本庫,也是實體學及相關專業領域中最大的,該資料庫目前已有數學、實體學和計算機科學方面的論文可開放擷取的達50多萬篇。

Artificial Intelligence

https://arxiv.org/list/cs.AI/recent

Learning (Computer Science)

https://arxiv.org/list/cs.LG/recent

Machine Learning (Stats)

https://arxiv.org/list/stat.ML/recent

NLP

https://arxiv.org/list/cs.CL/recent

Computer Vision

https://arxiv.org/list/cs.CV/recent

Semantic Scholar内搜尋

Semantic Scholar是由微軟聯合創始人保羅·艾倫創立的艾倫人工智能研究所推出的學術搜尋引擎

Neural Networks (17.9萬條結果)

https://www.semanticscholar.org/search?q=%22neural%20networks%22&sort=relevance&ae=false

Machine Learning (9.4萬條結果)

https://www.semanticscholar.org/search?q=%22machine%20learning%22&sort=relevance&ae=false

Natural Language (6.2萬條結果)

https://www.semanticscholar.org/search?q=%22natural%20language%22&sort=relevance&ae=false

Computer Vision (5.5萬條結果)

https://www.semanticscholar.org/search?q=%22computer%20vision%22&sort=relevance&ae=false

Deep Learning (2.4萬條結果)

https://www.semanticscholar.org/search?q=%22deep%20learning%22&sort=relevance&ae=false

Andrej Karpathy開發的網站

http://www.arxiv-sanity.com/

教程

我另外單獨有一篇詳細的文章涵蓋了我發現的所有的優秀教程内容:

超過150種最佳的機器學習、自然語言處理和Python教程

https://unsupervisedmethods.com/over-150-of-the-best-machine-learning-nlp-and-python-tutorials-ive-found-ffce2939bd7

小抄表

收藏 | 一文打盡AI、機器學習網絡資源!

和教程一樣,我同樣單獨有一篇文章介紹了許多種很有用的小抄表:

機器學習、Python和數學小抄表

https://unsupervisedmethods.com/cheat-sheet-of-machine-learning-and-python-and-math-cheat-sheets-a4afe4e791b6

通讀完本篇文章,是不是對于如何查找關于人工智能領域的資料有了清晰的方向。資料很多,大多都是國外的網站,是以大家需要科學上網喲~~~

原文釋出時間為:2018-03-12