天天看點

The 6 Best Free Online Artificial Intelligence Courses For 2018

這是 Columbia University

Week 1: maximum likelihood estimation, linear regression, least squares

Week 2: ridge regression, bias-variance, Bayes rule, maximum a posteriori inference

Week 3: Bayesian linear regression, sparsity, subset selection for linear regression

Week 4: nearest neighbor classification, Bayes classifiers, linear classifiers, perceptron

Week 5: logistic regression, Laplace approximation, kernel methods, Gaussian processes

Week 6: maximum margin, support vector machines, trees, random forests, boosting

Week 7: clustering, k-means, EM algorithm, missing data

Week 8: mixtures of Gaussians, matrix factorization

Week 9: non-negative matrix factorization, latent factor models, PCA and variations

Week 10: Markov models, hidden Markov models

Week 11: continuous state-space models, association analysis

Week 12: model selection, next steps

第1周:最大似然估計,線性回歸,最小二乘法

第2周:嶺回歸,偏差 - 方差,貝葉斯規則,最大後驗推斷

第3周:貝葉斯線性回歸,稀疏性,線性回歸的子集選擇

第4周:最近鄰分類,貝葉斯分類器,線性分類器,感覺器

第5周:邏輯回歸,拉普拉斯近似,核方法,高斯過程

第6周:最大邊際,支援向量機,樹木,随機森林,提升

第7周:聚類,k均值,EM算法,缺失資料

第8周:高斯混合,矩陣分解

第9周:非負矩陣分解,潛在因子模型,PCA和變化

第10周:馬爾可夫模型,隐馬爾可夫模型

第11周:連續狀态空間模型,關聯分析

第12周:模型選擇,後續步驟

繼續閱讀