這是 Columbia University
Week 1: maximum likelihood estimation, linear regression, least squares
Week 2: ridge regression, bias-variance, Bayes rule, maximum a posteriori inference
Week 3: Bayesian linear regression, sparsity, subset selection for linear regression
Week 4: nearest neighbor classification, Bayes classifiers, linear classifiers, perceptron
Week 5: logistic regression, Laplace approximation, kernel methods, Gaussian processes
Week 6: maximum margin, support vector machines, trees, random forests, boosting
Week 7: clustering, k-means, EM algorithm, missing data
Week 8: mixtures of Gaussians, matrix factorization
Week 9: non-negative matrix factorization, latent factor models, PCA and variations
Week 10: Markov models, hidden Markov models
Week 11: continuous state-space models, association analysis
Week 12: model selection, next steps
第1周:最大似然估計,線性回歸,最小二乘法
第2周:嶺回歸,偏差 - 方差,貝葉斯規則,最大後驗推斷
第3周:貝葉斯線性回歸,稀疏性,線性回歸的子集選擇
第4周:最近鄰分類,貝葉斯分類器,線性分類器,感覺器
第5周:邏輯回歸,拉普拉斯近似,核方法,高斯過程
第6周:最大邊際,支援向量機,樹木,随機森林,提升
第7周:聚類,k均值,EM算法,缺失資料
第8周:高斯混合,矩陣分解
第9周:非負矩陣分解,潛在因子模型,PCA和變化
第10周:馬爾可夫模型,隐馬爾可夫模型
第11周:連續狀态空間模型,關聯分析
第12周:模型選擇,後續步驟