C#互操作系列文章:
<a href="http://learninghard.blog.51cto.com/6146675/1117730">C#互操作性入門系列(一):C#中互操作性介紹</a>
<a href="http://learninghard.blog.51cto.com/6146675/1123130">C#互操作性入門系列(二):使用平台調用調用Win32 函數</a>
<a href="http://learninghard.blog.51cto.com/6146675/1124530">C#互操作性入門系列(三):平台調用中的資料封送處理</a>
<a href="http://learninghard.blog.51cto.com/6146675/1127124">C#互操作性入門系列(四):在C#中調用COM元件</a>
本專題概要
資料封送介紹
封送Win32資料類型
封送字元串的處理
封送結構體的處理
封送類的處理
小結
一、資料封送介紹
看到這個專題時,大家的第一個疑問肯定是——什麼是資料封送呢?(這系列專題中采用假設朋友的提問方式來解說概念,就是希望大家帶着問題去學習本專題内容,以及大家在平時的學習過程中也可以采用這個方式,個人覺得這個方式可以使自己學習效率有所提高,即使這樣在學習的過程可能會顯得慢了,但是這種方式會對你所看過的知識點會有一個更深的印象。遠比看的很快,最後卻發現記住的沒多少強,在這裡分享下這個學習方式,認為可以接受的朋友可以在平時的學習中可以嘗試下的,如果覺得不好的話,相信大家肯定也會有自己更好的學習方式的。)對于這個問題的解釋是,資料封送是——在托管代碼中對非托管函數進行互操作時,需要通過方法的參數和傳回值在托管記憶體和非托管記憶體之間傳遞資料的過程,資料封送處理的過程是由CLR(公共語言運作時)的封送處理服務(即封送拆送器)完成的。
封送拆送器主要進行3項任務:
将資料從托管類型轉換為非托管類型,或從非托管類型轉換為托管類型
将經過類型轉換的資料從托管代碼記憶體複制到非托管記憶體,或從非托管記憶體複制到托管記憶體
調用完成後,釋放封送處理過程中配置設定的記憶體
二、封送Win32資料類型
對非托管代碼進行互操作時,一定會有資料的封送處理。然而封送時需要處理的資料類型分為兩種——可直接複制到本機結構中的類型(blittable)和非直接複制到本機結構中的類型(non-bittable)。下面就這兩種資料類型分别做一個介紹。
2.1 可直接複制到本機結構中的類型
由于在托管代碼和非托管代碼中,資料類型在托管記憶體和非托管記憶體的表示形式不一樣,因為這樣的原因,是以我們需要對資料進行封送處理,以至于在托管代碼中調用非托管函數時,把正确的傳入參數傳遞給非托管函數和把正确的傳回值傳回給托管代碼中。然而,并不是所有資料類型在兩者記憶體的表現形式不一樣的,這時候我們把在托管記憶體和非托管記憶體中有相同表現形式的資料類型稱為——可直接複制到本機結構中的類型,這些資料類型不需要封送拆送器進行任何特殊的處理就可以在托管和非托管代碼之間傳遞, 下面列出一些課直接複制到本機結構中的簡單資料類型:
Windows 資料類型
非托管資料類型
托管資料類型
托管資料類型解釋
BYTE/Uchar/UInt8
unsigned char
System.Byte
無符号8位整型
Sbyte/Char/Int8
char
System.SByte
有符号8位整型
Short/Int16
short
System.Int16
有符号16位整型
USHORT/WORD/UInt16/WCHAR
unsigned short
System.UInt16
無符号16位整型
Bool/HResult/Int/Long
long/int
System.Int32
有符号32位整型
DWORD/ULONG/UINT
unsigned long/unsigned int
System.UInt32
無符号32位整型
INT64/LONGLONG
_int64
System.Int64
有符号64位整型
UINT64/DWORDLONG/ULONGLONG
_uint64
System.UInt64
無符号64位整型
INT_PTR/hANDLE/wPARAM
void*/int或_int64
System.IntPtr
有符号指針類型
HANDLE
void*
System.UIntPtr
無符号指針類型
FLOAT
float
System.Single
單精度浮點數
DOUBLE
double
System.Double
雙精度浮點數
除了上表列出來的簡單類型之外,還有一些複制類型也屬于可直接複制到本機結構中的資料類型:
(1) 資料元素都是可直接複制到本機結構中的一進制數組,如整數數組,浮點數組等
(2)隻包含可直接複制到本機結構中的格式化值類型
(3)成員變量全部都是可複制到本機結構中的類型且作為格式化類型封送的類
上面提到的格式化指的是——在類型定義時,成員的記憶體布局在聲明時就明确指定的類型。在代碼中用StructLayout屬性修飾被指定的類型,并将StructLayout的LayoutKind屬性設定為Sequential或Explicit,例如:
using System.Runtime.InteropServices;
// 下面的結構體也屬于可直接複制到本機結構中的類型
[StructLayout(LayoutKind.Sequential)]
publicstruct Point {
publicint x;
publicint y;
}
.2 非直接複制到本機結構中的類型
如果一個類型不是可直接複制到本機結構中的類型,那麼它就是非直接複制到本機結構中的類型。由于一些類型在托管記憶體和非托管記憶體的表現形式不一樣,是以對于這種類型,封送器需要對它們進行相應的類型轉換之後再複制到被調用的函數中,下面列出一些非直接複制到本機結構中的資料類型:
Bool
bool
System.Boolean
布爾類型
WCHAR/TCHAR
char/ wchar_t
System.Char
ANSI字元/Unicode字元
LPCSTR/LPCWSTR/
LPCTSTR/LPSTR/LPWSTR/LPTSTR
const char*/const wchar_t*/char*/wchar_t*
System.String
ANSI字元串/Unicode字元串,如果非托管代碼不需要更新此字元串時,此時用String類型在托管代碼中聲明字元串類型
LPSTR/LPWSTR/LPTSTR
Char*/wchar_t*
System.StringBuilder
ANSI字元串/Unicode字元串,如果非托管代碼需要更新此字元串,然後把更新的字元串傳回托管代碼中,此時用StringBuilder類型在托管代碼中聲明字元串
除了上表中列出的類型之外,還有很多其他類型屬于非直接複制到本機結構中的類型,例如其他指針類型和句柄類型等。了解了blittable和non-blittable類型的差別之後,就可以在互操作過程更好地處理資料的封送,下面就具體的一些資料類型的封送問題做一個簡單介紹
三、封送字元串的處理
在上一個專題中,我們已經涉及到字元串的封送問題了(上一個專題中使用了将字元串作為In參數傳遞給Win32 MessageBox 函數,具體可以檢視上一個專題) 。是以在這部分将介紹——封送作為傳回值的字元串,下面是一段示範代碼,代碼中主要是調用Win32 GetTempPath函數來獲得傳回傳回臨時路徑,此時拆送器就需要把傳回的字元串封送回托管代碼中。
// 托管函數中的傳回值封送回托管函數的例子
class Program
{
// Win32 GetTempPath函數的定義如下:
//DWORD WINAPI GetTempPath(
// _In_ DWORD nBufferLength,
// _Out_ LPTSTR lpBuffer
//); // 主要是注意如何在托管代碼中定義該函數原型 [DllImport("Kernel32.dll", CharSet = CharSet.Unicode, SetLastError=true)]
publicstaticexternuint GetTempPath(int bufferLength, StringBuilder buffer);
staticvoid Main(string[] args)
{
StringBuilder buffer = new StringBuilder(300);
uint tempPath=GetTempPath(300, buffer);
string path = buffer.ToString();
if (tempPath == 0)
{
int errorcode =Marshal.GetLastWin32Error();
Win32Exception win32expection = new Win32Exception(errorcode);
Console.WriteLine("調用非托管函數發生異常,異常資訊為:" +win32expection.Message);
}
Console.WriteLine("調用非托管函數成功。");
Console.WriteLine("Temp 路徑為:" + buffer);
Console.Read();
}
}
運作結果為:

四、封送結構體的處理
BOOL GetVersionEx(
LPOSVERSIONINFO lpVersionInformation
);
參數lpVersionInformation是一個指向 OSVERSIONINFO結構體的指針類型,是以我們在托管代碼中為函數GetVersionEx函數之前,必須知道 OSVERSIONINFO結構體的非托管定義,然後再在托管代碼中定義一個等價的結構體類型作為參數。以下是OSVERSIONINFO結構體的非托管定義:
typedefstruct _OSVERSIONINFO{
DWORD dwOSVersionInfoSize; //在使用GetVersionEx之前要将此初始化為結構的大小
DWORD dwMajorVersion; //系統主版本号
DWORD dwMinorVersion; //系統次版本号
DWORD dwBuildNumber; //系統建構号
DWORD dwPlatformId; //系統支援的平台
TCHAR szCSDVersion[128]; //系統更新檔包的名稱
WORD wServicePackMajor; //系統更新檔包的主版本
WORD wServicePackMinor; //系統更新檔包的次版本
WORD wSuiteMask; //辨別系統上的程式組
BYTE wProductType; //辨別系統類型
BYTE wReserved; //保留,未使用
} OSVERSIONINFO;
知道了OSVERSIONINFO結構體在非托管代碼中的定義之後, 現在我們就需要在托管代碼中定義一個等價的結構,并且要保證兩個結構體在記憶體中的布局相同。托管代碼中的結構體定義如下:
// 因為Win32 GetVersionEx函數參數lpVersionInformation是一個指向 OSVERSIONINFO的資料結構
// 是以托管代碼中定義個結構體,把結構體對象作為非托管函數參數
[StructLayout(LayoutKind.Sequential,CharSet=CharSet.Unicode)]
publicstruct OSVersionInfo
public UInt32 OSVersionInfoSize; // 結構的大小,在調用方法前要初始化該字段
public UInt32 MajorVersion; // 系統主版本号
public UInt32 MinorVersion; // 系統此版本号
public UInt32 BuildNumber; // 系統建構号
public UInt32 PlatformId; // 系統支援的平台
// 此屬性用于表示将其封送成内聯數組
[MarshalAs(UnmanagedType.ByValTStr,SizeConst=128)]
publicstring CSDVersion; // 系統更新檔包的名稱
public UInt16 ServicePackMajor; // 系統更新檔包的主版本
public UInt16 ServicePackMinor; // 系統更新檔包的次版本
public UInt16 SuiteMask; //辨別系統上的程式組
public Byte ProductType; //辨別系統類型
public Byte Reserved; //保留,未使用
}
從上面的定義可以看出, 托管代碼中定義的結構體有以下三個方面與非托管代碼中的結構體是相同的:
字段聲明的順序
字段的類型
字段在記憶體中的大小
并且在上面結構體的定義中,我們使用到了 StructLayout 屬性,該屬性屬于System.Runtime.InteropServices命名空間(是以在使用平台調用技術必須添加這個額外的命名空間)。這個類的作用就是允許開發人員顯式指定結構體或類中資料字段的記憶體布局,為了保證結構體中的資料字段在記憶體中的順序與定義時一緻,是以指定為 LayoutKind.Sequential(該枚舉也是預設值)。 下面就具體看看在托管代碼中調用的代碼:
using System;
using System.ComponentModel;
namespace 封送結構體的處理
{
// 對GetVersionEx進行托管定義
// 為了傳遞指向結構體的指針并将初始化的資訊傳遞給非托管代碼,需要用ref關鍵字修飾參數 // 這裡不能使用out關鍵字,如果使用了out關鍵字,CLR就不會對參數進行初始化操作,這樣就會導緻調用失敗 [DllImport("Kernel32",CharSet=CharSet.Unicode,EntryPoint="GetVersionEx")]
privatestaticextern Boolean GetVersionEx_Struct(ref OSVersionInfo osVersionInfo);
// 獲得作業系統資訊
privatestaticstring GetOSVersion()
// 定義一個字元串存儲版本資訊
string versionName = string.Empty;
// 初始化一個結構體對象
OSVersionInfo osVersionInformation = new OSVersionInfo();
// 調用GetVersionEx 方法前,必須用SizeOf方法設定結構體中OSVersionInfoSize 成員
osVersionInformation.OSVersionInfoSize = (UInt32)Marshal.SizeOf(typeof(OSVersionInfo));
// 調用Win32函數
Boolean result = GetVersionEx_Struct(ref osVersionInformation);
if (!result)
// 如果調用失敗,獲得最後的錯誤碼
int errorcode = Marshal.GetLastWin32Error();
Win32Exception win32Exc = new Win32Exception(errorcode);
Console.WriteLine("調用失敗的錯誤資訊為: " + win32Exc.Message);
// 調用失敗時傳回為空字元串
returnstring.Empty;
else
Console.WriteLine("調用成功");
switch (osVersionInformation.MajorVersion)
{
// 這裡僅僅讨論 主版本号為6的情況,其他情況是一樣讨論的
case 6:
switch (osVersionInformation.MinorVersion)
{
case 0:
if (osVersionInformation.ProductType == (Byte)0)
{
versionName = " Microsoft Windows Vista";
}
versionName = "Microsoft Windows Server 2008"; // 伺服器版本
break;
case 1:
versionName = " Microsoft Windows 7";
versionName = "Microsoft Windows Server 2008 R2";
case 2:
versionName = "Microsoft Windows 8";
}
default:
versionName = "未知的作業系統";
}
return versionName;
string OS=GetOSVersion();
Console.WriteLine("目前電腦安裝的作業系統為:{0}", OS);
}
}
附上微軟作業系統名和版本号的對應關系,大家可以參考下面的表對上面代碼進行其他的讨論:
作業系統
版本号
Windows 8
6.2
Windows 7
6.1
Windows Server 2008 R2
Windows Server 2008
6.0
Windows Vista
Windows Server 2003 R2
5.2
Windows Server 2003
Windows XP
5.1
Windows 2000
5.0
五、封送類的處理
下面直接通過GetVersionEx函數進行封送類的處理的例子,具體代碼如下:
namespace 封送類的處理
// 由于類的定義中CSDVersion為String類型,String是非直接複制到本機結構類型,
// 是以封送拆送器需要進行複制操作。
// 為了是非托管代碼能夠獲得在托管代碼中對象設定的初始值(指的是OSVersionInfoSize字段,調用函數前首先初始化該值),
// 是以必須加上[In]屬性;函數傳回時,為了将結果複制到托管對象中,必須同時加上 [Out]屬性
// 這裡不能是用ref關鍵字,因為 OsVersionInfo是類類型,本來就是引用類型,如果加ref 關鍵字就是傳入的為指針的指針了,這樣就會導緻調用失敗 [DllImport("Kernel32", CharSet = CharSet.Unicode, EntryPoint = "GetVersionEx")]
privatestaticextern Boolean GetVersionEx_Struct([In, Out] OSVersionInfo osVersionInfo);
// 定義一個字元串存儲作業系統資訊
// 初始化一個類對象
Boolean result = GetVersionEx_Struct(osVersionInformation);
string OS = GetOSVersion();
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Unicode)]
publicclass OSVersionInfo
public UInt32 OSVersionInfoSize = (UInt32)Marshal.SizeOf(typeof(OSVersionInfo));
public UInt32 MajorVersion = 0;
public UInt32 MinorVersion = 0;
public UInt32 BuildNumber = 0;
public UInt32 PlatformId = 0;
[MarshalAs(UnmanagedType.ByValTStr, SizeConst = 128)]
publicstring CSDVersion = null;
public UInt16 ServicePackMajor = 0;
public UInt16 ServicePackMinor = 0;
public UInt16 SuiteMask = 0;
public Byte ProductType = 0;
public Byte Reserved;
運作結果還是和上面使用結構體定義的一樣,還是附上下圖吧:
六、小結
本專題主要介紹了幾種類型的資料封送處理, 對于封送處理的一句話概括就是——保證托管代碼中定義的資料在記憶體中的布局與非托管代碼中的記憶體布局相同,專題中也列出了一些簡單類型在非托管代碼和托管代碼中定義的對應關系,對于一些沒有列出來的指針類型或回調函數等可以使用萬能的IntPtr類型在托管代碼中定義.然而本專題隻是對資料封送做一個入門的介紹, 要真真掌握資料封送處理還要考慮很多其他的因素,這個就需要大家在平時工作中積累的。
本文轉自LearningHard 51CTO部落格,原文連結:http://blog.51cto.com/learninghard/1124530,如需轉載請自行聯系原作者