下面我們再來看看,發生重複繼承的情況。所謂重複繼承,也就是某個基類被間接地重複繼承了多次。
下圖是一個繼承圖,我們重載了父類的f()函數。
其類繼承的源代碼如下所示。其中,每個類都有兩個變量,一個是整形(4位元組),一個是字元(1位元組),而且還有自己的虛函數,自己overwrite父類的虛函數。如子類D中,f()覆寫了超類的函數, f1() 和f2() 覆寫了其父類的虛函數,Df()為自己的虛函數。
class B
{
public:
int ib;
char cb;
B():ib(0),cb('B') {}
virtual void f() { cout << "B::f()" << endl;}
virtual void Bf() { cout << "B::Bf()" << endl;}
};
class B1 : public B
int ib1;
char cb1;
B1():ib1(11),cb1('1') {}
virtual void f() { cout << "B1::f()" << endl;}
virtual void f1() { cout << "B1::f1()" << endl;}
virtual void Bf1() { cout << "B1::Bf1()" << endl;}
class B2: public B
int ib2;
char cb2;
B2():ib2(12),cb2('2') {}
virtual void f() { cout << "B2::f()" << endl;}
virtual void f2() { cout << "B2::f2()" << endl;}
virtual void Bf2() { cout << "B2::Bf2()" << endl;}
class D : public B1, public B2
int id;
char cd;
D():id(100),cd('D') {}
virtual void f() { cout << "D::f()" << endl;}
virtual void f1() { cout << "D::f1()" << endl;}
virtual void f2() { cout << "D::f2()" << endl;}
virtual void Df() { cout << "D::Df()" << endl;}
我們用來存取子類記憶體布局的代碼如下所示:(在VC++ 2003和G++ 3.4.4下)
typedef void(*Fun)(void);
int** pVtab = NULL;
Fun pFun = NULL;
D d;
pVtab = (int**)&d;
cout << "[0] D::B1::_vptr->" << endl;
pFun = (Fun)pVtab[0][0];
cout << " [0] "; pFun();
pFun = (Fun)pVtab[0][1];
cout << " [1] "; pFun();
pFun = (Fun)pVtab[0][2];
cout << " [2] "; pFun();
pFun = (Fun)pVtab[0][3];
cout << " [3] "; pFun();
pFun = (Fun)pVtab[0][4];
cout << " [4] "; pFun();
pFun = (Fun)pVtab[0][5];
cout << " [5] 0x" << pFun << endl;
cout << "[1] B::ib = " << (int)pVtab[1] << endl;
cout << "[2] B::cb = " << (char)pVtab[2] << endl;
cout << "[3] B1::ib1 = " << (int)pVtab[3] << endl;
cout << "[4] B1::cb1 = " << (char)pVtab[4] << endl;
cout << "[5] D::B2::_vptr->" << endl;
pFun = (Fun)pVtab[5][0];
pFun = (Fun)pVtab[5][1];
pFun = (Fun)pVtab[5][2];
pFun = (Fun)pVtab[5][3];
pFun = (Fun)pVtab[5][4];
cout << " [4] 0x" << pFun << endl;
cout << "[6] B::ib = " << (int)pVtab[6] << endl;
cout << "[7] B::cb = " << (char)pVtab[7] << endl;
cout << "[8] B2::ib2 = " << (int)pVtab[8] << endl;
cout << "[9] B2::cb2 = " << (char)pVtab[9] << endl;
cout << "[10] D::id = " << (int)pVtab[10] << endl;
cout << "[11] D::cd = " << (char)pVtab[11] << endl;
程式運作結果如下:
<b>GCC 3.4.4</b>
<b>VC++ 2003</b>
[0] D::B1::_vptr->
[0] D::f()
[1] B::Bf()
[2] D::f1()
[3] B1::Bf1()
[4] D::f2()
[5] 0x1
[1] B::ib = 0
[2] B::cb = B
[3] B1::ib1 = 11
[4] B1::cb1 = 1
[5] D::B2::_vptr->
[2] D::f2()
[3] B2::Bf2()
[4] 0x0
[6] B::ib = 0
[7] B::cb = B
[8] B2::ib2 = 12
[9] B2::cb2 = 2
[10] D::id = 100
[11] D::cd = D
[4] D::Df()
[5] 0x00000000
[4] 0x00000000
下面是對于子類執行個體中的虛函數表的圖:
我們可以看見,最頂端的父類B其成員變量存在于B1和B2中,并被D給繼承下去了。而在D中,其有B1和B2的執行個體,于是B的成員在D的執行個體中存在兩份,一份是B1繼承而來的,另一份是B2繼承而來的。是以,如果我們使用以下語句,則會産生二義性編譯錯誤:
D d;
d.ib = 0; //二義性錯誤
d.B1::ib = 1; //正确
d.B2::ib = 2; //正确
注意,上面例程中的最後兩條語句存取的是兩個變量。雖然我們消除了二義性的編譯錯誤,但B類在D中還是有兩個執行個體,這種繼承造成了資料的重複,我們叫這種繼承為重複繼承。重複的基類資料成員可能并不是我們想要的。是以,C++引入了虛基類的概念。
虛拟繼承的出現就是為了解決重複繼承中多個間接父類的問題的。鑽石型的結構是其最經典的結構。也是我們在這裡要讨論的結構:
上述的“重複繼承”隻需要把B1和B2繼承B的文法中加上virtual 關鍵,就成了虛拟繼承,其繼承圖如下所示:
上圖和前面的“重複繼承”中的類的内部資料和接口都是完全一樣的,隻是我們采用了虛拟繼承:其省略後的源碼如下所示:
class B {……};
class B1 : <b>virtual</b> public B{……};
class B2: <b>virtual</b> public B{……};
class D : public B1, public B2{ …… };
在檢視D之前,我們先看一看<b>單一虛拟繼承</b>的情況。下面是一段在VC++2003下的測試程式:(因為VC++和GCC的記憶體而局上有一些細節上的不同,是以這裡隻給出VC++的程式,GCC下的程式大家可以根據我給出的程式自己仿照着寫一個去試一試):
B1 bb1;
pVtab = (int**)&bb1;
cout << "[0] B1::_vptr->" << endl;
cout << " [0] ";
pFun(); //B1::f1();
cout << " [1] ";
pFun(); //B1::bf1();
cout << " [2] ";
cout << pVtab[0][2] << endl;
cout << "[1] = 0x";
cout << (int*)*((int*)(&bb1)+1) <<endl; //B1::ib1
cout << "[2] B1::ib1 = ";
cout << (int)*((int*)(&bb1)+2) <<endl; //B1::ib1
cout << "[3] B1::cb1 = ";
cout << (char)*((int*)(&bb1)+3) << endl; //B1::cb1
cout << "[4] = 0x";
cout << (int*)*((int*)(&bb1)+4) << endl; //NULL
cout << "[5] B::_vptr->" << endl;
pFun(); //B1::f();
pFun(); //B::Bf();
cout << "0x" << (Fun)pVtab[5][2] << endl;
cout << "[6] B::ib = ";
cout << (int)*((int*)(&bb1)+6) <<endl; //B::ib
cout << "[7] B::cb = ";
其運作結果如下(我結出了GCC的和VC++2003的對比):
<b>[0] B1::_vptr -></b>
<b> [0] : B1::f()</b>
<b> [1] : B1::f1()</b>
<b> [2] : B1::Bf1()</b>
<b> [3] : 0</b>
<b>[1] B1::ib1 : 11</b>
<b>[2] B1::cb1 : 1</b>
<b>[3] B::_vptr -></b>
<b> [1] : B::Bf()</b>
<b> [2] : 0</b>
<b>[4] B::ib : 0</b>
<b>[5] B::cb : B</b>
<b>[6] NULL : 0</b>
<b>[0] B1::_vptr-></b>
<b> [0] B1::f1()</b>
<b> [1] B1::Bf1()</b>
<b> [2] 0</b>
<b>[1] = 0x00454310</b><b> </b><b>ç</b><b>該位址取值後是</b><b>-4</b><b></b>
<b>[2] B1::ib1 = 11</b>
<b>[3] B1::cb1 = 1</b>
<b>[4] = 0x00000000</b>
<b>[5] B::_vptr-></b>
<b> [0] B1::f()</b>
<b> [1] B::Bf()</b>
<b> [2] 0x00000000</b>
<b>[6] B::ib = 0</b>
<b>[7] B::cb = B</b>
這裡,大家可以自己對比一下。關于細節上,我會在後面一并再說。
下面的測試程式是看子類D的記憶體布局,同樣是VC++ 2003的(因為VC++和GCC的記憶體布局上有一些細節上的不同,而VC++的相對要清楚很多,是以這裡隻給出VC++的程式,GCC下的程式大家可以根據我給出的程式自己仿照着寫一個去試一試):
cout << " [0] "; pFun(); //D::f1();
cout << " [1] "; pFun(); //B1::Bf1();
cout << " [2] "; pFun(); //D::Df();
cout << " [3] ";
cout << pFun << endl;
//cout << pVtab[4][2] << endl;
cout << (int*)((&dd)+1) <<endl; //????
cout << *((int*)(&dd)+2) <<endl; //B1::ib1
cout << (char)*((int*)(&dd)+3) << endl; //B1::cb1
//---------------------
cout << "[4] D::B2::_vptr->" << endl;
pFun = (Fun)pVtab[4][0];
cout << " [0] "; pFun(); //D::f2();
pFun = (Fun)pVtab[4][1];
cout << " [1] "; pFun(); //B2::Bf2();
pFun = (Fun)pVtab[4][2];
cout << "[5] = 0x";
cout << *((int*)(&dd)+5) << endl; // ???
cout << "[6] B2::ib2 = ";
cout << (int)*((int*)(&dd)+6) <<endl; //B2::ib2
cout << "[7] B2::cb2 = ";
cout << (char)*((int*)(&dd)+7) << endl; //B2::cb2
cout << "[8] D::id = ";
cout << *((int*)(&dd)+8) << endl; //D::id
cout << "[9] D::cd = ";
cout << (char)*((int*)(&dd)+9) << endl;//D::cd
cout << "[10] = 0x";
cout << (int*)*((int*)(&dd)+10) << endl;
cout << "[11] D::B::_vptr->" << endl;
pFun = (Fun)pVtab[11][0];
cout << " [0] "; pFun(); //D::f();
pFun = (Fun)pVtab[11][1];
cout << " [1] "; pFun(); //B::Bf();
pFun = (Fun)pVtab[11][2];
cout << "[12] B::ib = ";
cout << *((int*)(&dd)+12) << endl; //B::ib
cout << "[13] B::cb = ";
cout << (char)*((int*)(&dd)+13) <<endl;//B::cb
下面給出運作後的結果(分VC++和GCC兩部份)
<b> [0] : D::f()</b>
<b> [1] : D::f1()</b>
<b> [3] : D::f2()</b>
<b> [4] : D::Df()</b>
<b> [5] : 1</b>
<b>[3] B2::_vptr -></b>
<b> [1] : D::f2()</b>
<b> [2] : B2::Bf2()</b>
<b>[4] B2::ib2 : 12</b>
<b>[5] B2::cb2 : 2</b>
<b>[6] D::id : 100</b>
<b>[7] D::cd : D</b>
<b>[8] B::_vptr -></b>
<b>[9] B::ib : 0</b>
<b>[10] B::cb : B</b>
<b>[11] NULL : 0</b>
<b>[0] D::B1::_vptr-></b>
<b> [0] D::f1()</b>
<b> [2] D::Df()</b>
<b> [3] 00000000</b>
<b>[1] = 0x0013FDC4 </b><b>ç</b><b> </b><b>該位址取值後是</b><b>-4</b>
<b>[4] D::B2::_vptr-></b>
<b> [0] D::f2()</b>
<b> [1] B2::Bf2()</b>
<b> [2] 00000000</b>
<b>[5] = 0x4539260 </b><b>ç</b><b> </b><b>該位址取值後是</b><b>-4</b>
<b>[6] B2::ib2 = 12</b>
<b>[7] B2::cb2 = 2</b>
<b>[8] D::id = 100</b>
<b>[9] D::cd = D</b>
<b>[10] = 0x00000000</b>
<b>[11] D::B::_vptr-></b>
<b> [0] D::f()</b>
<b>[12] B::ib = 0</b>
<b>[13] B::cb = B</b><b></b>
關于虛拟繼承的運作結果我就不畫圖了(前面的作圖已經讓我産生了很嚴重的厭倦感,是以就偷個懶了,大家見諒了)
在上面的輸出結果中,我用不同的顔色做了一些标明。我們可以看到如下的幾點:
1)無論是GCC還是VC++,除了一些細節上的不同,其大體上的對象布局是一樣的。也就是說,先是B1(黃色),然後是B2(綠色),接着是D(灰色),而B這個超類(青藍色)的執行個體都放在最後的位置。
2)關于虛函數表,尤其是第一個虛表,GCC和VC++有很重大的不一樣。但仔細看下來,還是VC++的虛表比較清晰和有邏輯性。
3)VC++和GCC都把B這個超類放到了最後,而VC++有一個NULL分隔符把B和B1和B2的布局分開。GCC則沒有。
4)VC++中的記憶體布局有兩個位址我有些不是很明白,在其中我用紅色标出了。取其内容是-4。接道理來說,這個指針應該是指向B類執行個體的記憶體位址(這個做法就是為了保證重複的父類隻有一個執行個體的技術)。但取值後卻不是。這點我目前還并不太清楚,還向大家請教。
5)GCC的記憶體布局中在B1和B2中則沒有指向B的指針。這點可以了解,編譯器可以通過計算B1和B2的size而得出B的偏移量。
C++這門語言是一門比較複雜的語言,對于程式員來說,我們似乎永遠摸不清楚這門語言背着我們在幹了什麼。需要熟悉這門語言,我們就必需要了解C++裡面的那些東西,需要我們去了解他後面的記憶體對象。這樣我們才能真正的了解C++,進而能夠更好的使用C++這門最難的程式設計語言。
本文轉自 haoel 51CTO部落格,原文連結:http://blog.51cto.com/haoel/124561,如需轉載請自行聯系原作者