有時候查詢中會帶有多個字段的查詢條件,但是其中任何單個字段的選擇率都不高,但是多個字段組合起來卻有比較好的選擇率。這種場景是bitmap索引大顯身手的地方,但是bitmap索引對更新性能的影響相當大,不适合OLTP場景。PG不支援bitmap索引,但是有一個臨時的記憶體中的類似bitmap索引的東西,叫“Bitmap Index Scan”。
除了Bitmap Index Scan,多字段索引也是一種選擇,但是兩種方法的性能有沒有差異呢?下面作個測試看看。
測試環境在一個PC的虛拟機上
主控端
CPU:AMD Athlon II X4 640 3.0GHz
MEM:6G
OS:Win7 64bit
虛拟機所在存儲:Apacer A S510S 128GB
虛拟機
CPU:4 core
MEM: 2G
OS:CentOS release 6.5 (Final)
PostgreSQL:9.3.4(shared_buffers = 128MB,其它都是預設值)
postgres=# create table tb1(c1 int,c2 int);
CREATE TABLE
postgres=# insert into tb1 select round(random()*100),round(random()*1000) from generate_series(1,10000000);
INSERT 0 10000000
postgres=# select pg_size_pretty(pg_table_size('tb1'));
pg_size_pretty
----------------
346 MB
(1 row)
postgres=# \timing
Timing is on.
postgres=# select count(*) from tb1 where c1=99 and c2=999;
count
-------
92
Time: 1376.393 ms
postgres=# create index tb1_idx1 on tb1(c1);
CREATE INDEX
Time: 65308.131 ms
postgres=# select pg_size_pretty(pg_relation_size('tb1_idx1'));
214 MB
Time: 2.659 ms
postgres=# explain (analyze,buffers) select count(*) from tb1 where c1=99 and c2=999;
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------------------
Aggregate (cost=47675.20..47675.21 rows=1 width=0) (actual time=1267.921..1267.921 rows=1 loops=1)
Buffers: shared read=39978
-> Bitmap Heap Scan on tb1 (cost=1891.96..47674.95 rows=99 width=0) (actual time=40.726..1267.631 rows=92 loops=1)
Recheck Cond: (c1 = 99)
Rows Removed by Index Recheck: 7363157
Filter: (c2 = 999)
Rows Removed by Filter: 99794
Buffers: shared read=39978
-> Bitmap Index Scan on tb1_idx1 (cost=0.00..1891.93 rows=102333 width=0) (actual time=30.829..30.829 rows=99886 loops=1)
Index Cond: (c1 = 99)
Buffers: shared read=276
Total runtime: 1267.961 ms
(12 rows)
Time: 1268.916 ms
c1單索引的選擇率隻有1/100,對查詢性能提升毫無作用。
postgres=# drop index tb1_idx1 ;
DROP INDEX
Time: 41.062 ms
postgres=# create index tb1_idx2 on tb1(c2);
Time: 50313.915 ms
postgres=# select pg_size_pretty(pg_relation_size('tb1_idx2'));
Time: 0.915 ms
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------------
Aggregate (cost=23558.69..23558.70 rows=1 width=0) (actual time=74.215..74.215 rows=1 loops=1)
Buffers: shared hit=1948 read=6954
-> Bitmap Heap Scan on tb1 (cost=180.85..23558.45 rows=99 width=0) (actual time=5.462..73.883 rows=92 loops=1)
Recheck Cond: (c2 = 999)
Filter: (c1 = 99)
Rows Removed by Filter: 9800
Buffers: shared hit=1948 read=6954
-> Bitmap Index Scan on tb1_idx2 (cost=0.00..180.82 rows=9652 width=0) (actual time=2.414..2.414 rows=9892 loops=1)
Index Cond: (c2 = 999)
Buffers: shared read=30
Total runtime: 74.298 ms
(11 rows)
Time: 76.732 ms
c1單索引的選擇率有1/1000,性能提升很明顯。
Time: 56792.281 ms
QUERY PLAN
------
Aggregate (cost=2456.74..2456.75 rows=1 width=0) (actual time=50.347..50.348 rows=1 loops=1)
Buffers: shared hit=6587 read=343
-> Bitmap Heap Scan on tb1 (cost=2073.06..2456.49 rows=99 width=0) (actual time=39.969..50.312 rows=92 loops=1)
Recheck Cond: ((c2 = 999) AND (c1 = 99))
Rows Removed by Index Recheck: 7291
Buffers: shared hit=6587 read=343
-> BitmapAnd (cost=2073.06..2073.06 rows=99 width=0) (actual time=37.864..37.864 rows=0 loops=1)
Buffers: shared hit=30 read=276
-> Bitmap Index Scan on tb1_idx2 (cost=0.00..180.82 rows=9652 width=0) (actual time=3.091..3.091 rows=9892 loops=1)
Index Cond: (c2 = 999)
Buffers: shared hit=30
-> Bitmap Index Scan on tb1_idx1 (cost=0.00..1891.93 rows=102333 width=0) (actual time=33.030..33.030 rows=99886 loo
ps=1)
Index Cond: (c1 = 99)
Buffers: shared read=276
Total runtime: 50.484 ms
(15 rows)
Time: 52.287 ms
c1+c2索引bitmap掃描性能進一步提升。(這個性能提升也可能僅僅是因為buffers的hit命中率提升)
postgres=# create index tb1_idx3 on tb1(c1,c2);
Time: 67824.333 ms
postgres=# select pg_size_pretty(pg_relation_size('tb1_idx3'));
Time: 0.835 ms
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------
Aggregate (cost=389.13..389.14 rows=1 width=0) (actual time=0.580..0.580 rows=1 loops=1)
Buffers: shared hit=92 read=3
-> Bitmap Heap Scan on tb1 (cost=5.45..388.89 rows=99 width=0) (actual time=0.298..0.566 rows=92 loops=1)
Recheck Cond: ((c1 = 99) AND (c2 = 999))
Buffers: shared hit=92 read=3
-> Bitmap Index Scan on tb1_idx3 (cost=0.00..5.42 rows=99 width=0) (actual time=0.279..0.279 rows=92 loops=1)
Index Cond: ((c1 = 99) AND (c2 = 999))
Buffers: shared read=3
Total runtime: 0.651 ms
(9 rows)
Time: 3.912 ms
由此可見,本例中,多字段索引的效率相當高。
http://postgres.cn/docs/9.3/indexes-multicolumn.html
------------------------------------------------------------------
一個多字段的 B-tree 索引可以用在包含索引字段子集的查詢條件裡,不過, 如果在前導字段(最左邊)上有限制條件,那麼效率最高。準确的規則是前導字段上的等于限制, 加上第一個沒有等于限制的非等于限制字段,将用于限制所掃描的索引範圍。 将檢查這兩個字段右邊字段上的索引以減少對表的通路,但是并不減少需要掃描的索引。比如, 假如我們有一個在(a, b, c)上的索引,查詢條件是WHERE a = 5 AND b >= 42 AND c = 77的索引條目将被忽略,但是他們仍然會被掃描。 這個索引原則上仍然會被用于那些在b和/或c上有限制, 但是在a上沒有限制的查詢,但是就必須掃描整個索引了。是以,在大多數這種情況下, 優化器會選擇順序掃描表,而不使用索引。
b-tree多字段索引的原理很簡單,就是把多個字段,按定義索引時的先後順序排序,是以越靠前的字段越重要。
下面是b-tree多字段索引條目内容的一個例子。
postgres=# \d tb1
Table "public.tb1"
Column | Type | Modifiers
--------+---------+-----------
id | integer |
name | text |
Indexes:
"tb1_idx2" btree (id, name)
postgres=# insert into tb1 values(1,'aaaa');
INSERT 0 1
postgres=# create extension pageinspect;
CREATE EXTENSION
postgres=# SELECT * FROM bt_page_items('tb1_idx2', 1);
itemoffset | ctid | itemlen | nulls | vars | data
------------+-------+---------+-------+------+-------------------------------------------------
1 | (0,5) | 24 | f | t | 01 00 00 00 0b 61 61 61 61 00 00 00 00 00 00 00
postgres=# select 'a'::bytea;
bytea
\x61