1, 對任意輸入的正整數N,編寫程式求N!的尾部連續0的個數,并指出計算複雜度。如:18!=6402373705728000,尾部連續0的個數是3。(不用考慮數值超出計算機整數界限的問題)
解法1:(直接大數計算N!)
複制代碼
/**
*
* @author phinecos
* @since 2005-05-27
*/
public class test
{
private static String multipy(String num1, String num2)
{//大數乘法
String result = "0";
int i,j,n1,n2;
int len1 = num1.length();
int len2 = num2.length();
if (len1 < len2)
{
for (i = len1 -1; i >=0; --i)
{
n1 = num1.charAt(i) - '0';
String sum = "0";
for (j = 0; j < n1; ++j)
{
sum = add(sum,num2);
}
StringBuilder tmpSB = new StringBuilder(sum);
for (j = i; j < len1 -1; ++j)
tmpSB.append("0");
result = add(result,tmpSB.toString());
}
}
else
for (i = len2 -1; i >=0; --i)
n2 = num2.charAt(i) - '0';
for (j = 0; j < n2; ++j)
sum = add(sum,num1);
for (j = i; j < len2 -1; ++j)
return result;
}
private static String add(String num1, String num2)
{
String result = "";
int nAddOn = 0;
int i,j,n1,n2,sum;
StringBuilder sb = new StringBuilder();
for (i = len1 - 1,j = len2 - 1 ; i >= 0 && j >= 0; --i,--j)
n1 = num1.charAt(i) - '0';
n2 = num2.charAt(j) - '0';
sum = n1 + n2 + nAddOn;
if (sum >= 10)
nAddOn = 1;
else
nAddOn = 0;
sb.append(sum % 10);
if (len1 > len2)
for (; i >= 0; --i)
sum = n1 + nAddOn;
if (sum >= 10)
nAddOn = 1;
else
nAddOn = 0;
sb.append(sum % 10);
else if (len2 > len1)
for (; j >= 0; --j)
n2 = num2.charAt(j) - '0';
sum = n2 + nAddOn;
if (nAddOn > 0)
sb.append(nAddOn);
sb.reverse();
result = sb.toString();
}
private static String factorial(int n)
String result = "1";
for (int i = n; i >= 2; --i)
result = multipy(result,String.valueOf(i));
private static int countNFactZeroes(int n)
String result = factorial(n);//N!
System.out.println(result);
int count = 0;
for (int i = result.length()-1; i >= 0; --i)
if (result.charAt(i) == '0')
++count;
break;
return count;
public static void main(String[] args) throws Exception
System.out.println(countNFactZeroes(18));
}
解法2:連續K個0,則說明是10^K的倍數,即(2×5)^ K= 2^K× 5^K;待求的數為N*(N-1)(N-2)………1,由于每兩個數至少可以分解出1個2,2肯定比5多,是以K的個數取決于上式的分解因子中有幾個5的問題;能拆解出5的隻可能是5的倍數,而能拆解出多少個5則看這個數是5的幾次方的倍數了。時間複雜度是O(nlogn)
private static int countNFactZeroes2(int n)
int i,j,result=0;
for(i = 5; i <= n; i += 5) // 循環次數為n/5
{//隻針對可以整除5的分解因子
for(j = i; j%5 == 0; j /= 5) // 此處的最大循環次數為 LOG5(N)
{//目前分解因子可以整除幾個5
++result;
}
}
return result;
解法3:N不變,pow5以5的幂遞增,此算法的思想是求出N以内所有被5整除的數的個數,所有被25整除的個數(在5的基礎上多出了一個5因子),所有被125整除的個數(在25的基礎上多出了一個5因子)。。。
private static int countNFactZeroes3(int n)
int pow5,result=0;
for(pow5 = 5; pow5 <= n; pow5 *= 5) // 此處的循環次數為LOG5(N)
result += n / pow5;
設最大數為N, 設5^(n+1) > N >= 5^n
[N/5] + [N/(5^2)] + [N/(5^3)] + ... + [N/(5^n)] 即為連續0的個數
上述式子的項數為log5(N),即為循環的次數,故複雜度為log5(N)
解法4:由解法3可得如下:
[N/5] + [N/(5^2)] + [N/(5^3)] + ... + [N/(5^n)]
=[N/5] + [[N/5]/5] + [ [[N/5]/5]/5] + ... + [。。。]
=A1+ [A1/5] + [A2/5] + ... + [An-1/5]
即上述各項構成等比數列,An=An-1/5,等比為1/5
即對A1反複除5,隻要其大于0,即相加,便得到以下算法
private static int countNFactZeroes4(int n)
int result=0;
int m = n/5;
while (m > 0)
result += m;
m = m/5;
等比數列的項數為log5(N),即為循環的次數,故複雜度為log5(N)
2,題目: 請編寫一個 C 函數,該函數将給定的一個字元串轉換成整數
/************************************************************************/
/* Author: phinecos Date:2009-05-27 */
#include <iostream>
#include <cassert>
using namespace std;
int StringToInt(const char* str)
{//考慮八進制,十六進制,十進制
assert(str != NULL);
assert(strlen(str) != 0);
int result = 0;
int sign = 1;//符号位
int radix = 10;//預設是進制
const char *p = str;
if (*p == '-')
{//負數
sign = -1;
++p;
if (*p == '0')
{//以'0'開頭,或者是八進制,或者是十六進制
if ((*(p+1) == 'x') || (*(p+1) == 'X'))
{//16進制
radix = 16;
p += 2;//跳過'0x'
{//八進制
radix = 8;
++p;//跳過'0'
while (*p != '\0')
if (radix == 16)
if (*p >='0' && *p <= '9')
result = result*radix + *p - '0';
{//字母
int tmp = toupper(*p);//大寫化
result = result*radix + tmp -'A'+10;
{//8或進制,不含字母
result = result*radix + *p - '0';
return result * sign;
int main()
cout << StringToInt("-355643") << endl;
cout << StringToInt("-0x200") << endl;
cout << StringToInt("-0123") << endl;
cout << StringToInt("-0x7FFFFFFF") << endl;
return 0;
3,已知兩個字元數組,char a[m],b[n],m>n>1000,寫程式将a中存在,但b中不存在的元素放入字元數組c中,并說明算法的時間複雜度
bool isExist[256] = {false};//256個字元是否存在的标志
char* merge(char a[], int n, char b[],int m)
char *c = new char[m+n];
int i,k = 0;
//判斷數組a中哪些字元存在
for (i = 0; i < n; ++i)
isExist[a[i]] = true;
//判斷數組b中哪些字元存在
for (i = 0; i < m; ++i)
if (isExist[b[i]] == true)
isExist[b[i]] = false;
//a中存在,b中不存在的加入新數組
char ch;
for (i = 0; i < 256; ++i)
if (isExist[i] == true)
ch = (char)i;
c[k++] = ch;
c[k] = '\0';
return c;
char a[] = {'a','c','4','s','v','y','Y','C','E'};
char b[] = {'c','y',',','u','r'};
int n = sizeof(a) / sizeof(char);
int m = sizeof(b) / sizeof(char);
char *c = merge(a,n,b,m);
cout << c << endl;
delete [] c;
本文轉自Phinecos(洞庭散人)部落格園部落格,原文連結:http://www.cnblogs.com/phinecos/archive/2009/05/27/1490921.html 轉載請自行聯系原作者