<a target="_blank" href="http://poj.org/problem?id=2406">點選打開題目</a>
Power Strings
Time Limit: 3000MS
Memory Limit: 65536K
Total Submissions: 33548
Accepted: 13935
Description
Given two strings a and b we define a*b to be their concatenation. For example, if a = "abc" and b = "def" then a*b = "abcdef". If we think of concatenation as multiplication, exponentiation by a non-negative integer is defined in the normal way: a^0 = "" (the
empty string) and a^(n+1) = a*(a^n).
Input
Each test case is a line of input representing s, a string of printable characters. The length of s will be at least 1 and will not exceed 1 million characters. A line containing a period follows the last test case.
Output
For each s you should print the largest n such that s = a^n for some string a.
Sample Input
Sample Output
Hint
This problem has huge input, use scanf instead of cin to avoid time limit exceed.
題目翻譯意:給一個字元串S長度不超過10^6,求最大的n使得S由n個相同的字元串a連接配接而成,如:"ababab"則由n=3個"ab"連接配接而成,"aaaa"由n=4個"a"連接配接而成,"abcd"則由n=1個"abcd"連接配接而成。
解題思路:假設S的長度為len,則S存在循環子串,當且僅當,len可以被len - next[len]整除,最短循環子串為S[len - next[len]]
利用KMP算法,求字元串的特征向量next,若len可以被len - next[len]整除,則最大循環次數n為len/(len - next[len]),否則為1