天天看點

對象記憶體布局 (15)重複繼承鑽石型多重虛拟繼承結束語

下面我們再來看看,發生重複繼承的情況。所謂重複繼承,也就是某個基類被間接地重複繼承了多次。

下圖是一個繼承圖,我們重載了父類的f()函數。

對象記憶體布局 (15)重複繼承鑽石型多重虛拟繼承結束語

其類繼承的源代碼如下所示。其中,每個類都有兩個變量,一個是整形(4位元組),一個是字元(1位元組),而且還有自己的虛函數,自己overwrite父類的虛函數。如子類D中,f()覆寫了超類的函數, f1()和f2() 覆寫了其父類的虛函數,Df()為自己的虛函數。

class B

{

    public:

        int ib;

        char cb;

        B():ib(0),cb('B') {}

        virtual void f() { cout << "B::f()" << endl;}

        virtual void Bf() { cout << "B::Bf()" << endl;}

};

class B1 :  public B

        int ib1;

        char cb1;

        B1():ib1(11),cb1('1') {}

        virtual void f() { cout << "B1::f()" << endl;}

        virtual void f1() { cout << "B1::f1()" << endl;}

        virtual void Bf1() { cout << "B1::Bf1()" << endl;}

class B2:  public B

        int ib2;

        char cb2;

        B2():ib2(12),cb2('2') {}

        virtual void f() { cout << "B2::f()" << endl;}

        virtual void f2() { cout << "B2::f2()" << endl;}

        virtual void Bf2() { cout << "B2::Bf2()" << endl;}

class D : public B1, public B2

        int id;

        char cd;

        D():id(100),cd('D') {}

        virtual void f() { cout << "D::f()" << endl;}

        virtual void f1() { cout << "D::f1()" << endl;}

        virtual void f2() { cout << "D::f2()" << endl;}

        virtual void Df() { cout << "D::Df()" << endl;}

我們用來存取子類記憶體布局的代碼如下所示:(在VC++ 2003和G++ 3.4.4下)

    typedef void(*Fun)(void);

    int** pVtab = NULL;

    Fun pFun = NULL;

    D d;

    pVtab = (int**)&d;

    cout << "[0] D::B1::_vptr->" << endl;

    pFun = (Fun)pVtab[0][0];

    cout << "     [0] ";    pFun();

    pFun = (Fun)pVtab[0][1];

    cout << "     [1] ";    pFun();

    pFun = (Fun)pVtab[0][2];

    cout << "     [2] ";    pFun();

    pFun = (Fun)pVtab[0][3];

    cout << "     [3] ";    pFun();

    pFun = (Fun)pVtab[0][4];

    cout << "     [4] ";    pFun();

    pFun = (Fun)pVtab[0][5];

    cout << "     [5] 0x" << pFun << endl;

    cout << "[1] B::ib = " << (int)pVtab[1] << endl;

    cout << "[2] B::cb = " << (char)pVtab[2] << endl;

    cout << "[3] B1::ib1 = " << (int)pVtab[3] << endl;

    cout << "[4] B1::cb1 = " << (char)pVtab[4] << endl;

    cout << "[5] D::B2::_vptr->" << endl;

    pFun = (Fun)pVtab[5][0];

    pFun = (Fun)pVtab[5][1];

    pFun = (Fun)pVtab[5][2];

    pFun = (Fun)pVtab[5][3];

    pFun = (Fun)pVtab[5][4];

    cout << "     [4] 0x" << pFun << endl;

    cout << "[6] B::ib = " << (int)pVtab[6] << endl;

    cout << "[7] B::cb = " << (char)pVtab[7] << endl;   

    cout << "[8] B2::ib2 = " << (int)pVtab[8] << endl;

    cout << "[9] B2::cb2 = " << (char)pVtab[9] << endl;

    cout << "[10] D::id = " << (int)pVtab[10] << endl;

    cout << "[11] D::cd = " << (char)pVtab[11] << endl;

程式運作結果如下:

GCC 3.4.4

VC++ 2003

[0] D::B1::_vptr->

     [0] D::f()

     [1] B::Bf()

     [2] D::f1()

     [3] B1::Bf1()

     [4] D::f2()

     [5] 0x1

[1] B::ib = 0

[2] B::cb = B

[3] B1::ib1 = 11

[4] B1::cb1 = 1

[5] D::B2::_vptr->

     [2] D::f2()

     [3] B2::Bf2()

     [4] 0x0

[6] B::ib = 0

[7] B::cb = B

[8] B2::ib2 = 12

[9] B2::cb2 = 2

[10] D::id = 100

[11] D::cd = D

     [4] D::Df()

     [5] 0x00000000

     [4] 0x00000000

下面是對于子類執行個體中的虛函數表的圖:

對象記憶體布局 (15)重複繼承鑽石型多重虛拟繼承結束語

我們可以看見,最頂端的父類B其成員變量存在于B1和B2中,并被D給繼承下去了。而在D中,其有B1和B2的執行個體,于是B的成員在D的執行個體中存在兩份,一份是B1繼承而來的,另一份是B2繼承而來的。是以,如果我們使用以下語句,則會産生二義性編譯錯誤:

D d;

d.ib = 0;               //二義性錯誤

d.B1::ib = 1;           //正确

d.B2::ib = 2;           //正确

注意,上面例程中的最後兩條語句存取的是兩個變量。雖然我們消除了二義性的編譯錯誤,但B類在D中還是有兩個執行個體,這種繼承造成了資料的重複,我們叫這種繼承為重複繼承。重複的基類資料成員可能并不是我們想要的。是以,C++引入了虛基類的概念。

虛拟繼承的出現就是為了解決重複繼承中多個間接父類的問題的。鑽石型的結構是其最經典的結構。也是我們在這裡要讨論的結構:

上述的“重複繼承”隻需要把B1和B2繼承B的文法中加上virtual 關鍵,就成了虛拟繼承,其繼承圖如下所示:

對象記憶體布局 (15)重複繼承鑽石型多重虛拟繼承結束語

上圖和前面的“重複繼承”中的類的内部資料和接口都是完全一樣的,隻是我們采用了虛拟繼承:其省略後的源碼如下所示:

class B {……};

class B1 : virtual public B{……};

class B2: virtual public B{……};

class D : public B1, public B2{ …… };

在檢視D之前,我們先看一看單一虛拟繼承的情況。下面是一段在VC++2003下的測試程式:(因為VC++和GCC的記憶體而局上有一些細節上的不同,是以這裡隻給出VC++的程式,GCC下的程式大家可以根據我給出的程式自己仿照着寫一個去試一試):

    B1 bb1;

    pVtab = (int**)&bb1;

    cout << "[0] B1::_vptr->" << endl;

    cout << "     [0] ";

    pFun(); //B1::f1();

    cout << "     [1] ";

    pFun(); //B1::bf1();

    cout << "     [2] ";

    cout << pVtab[0][2] << endl;

    cout << "[1] = 0x";

    cout << (int*)*((int*)(&bb1)+1) <<endl; //B1::ib1

    cout << "[2] B1::ib1 = ";

    cout << (int)*((int*)(&bb1)+2) <<endl; //B1::ib1

    cout << "[3] B1::cb1 = ";

    cout << (char)*((int*)(&bb1)+3) << endl; //B1::cb1

    cout << "[4] = 0x";

    cout << (int*)*((int*)(&bb1)+4) << endl; //NULL

    cout << "[5] B::_vptr->" << endl;

    pFun(); //B1::f();

    pFun(); //B::Bf();

    cout << "0x" << (Fun)pVtab[5][2] << endl;

    cout << "[6] B::ib = ";

    cout << (int)*((int*)(&bb1)+6) <<endl; //B::ib

    cout << "[7] B::cb = ";

其運作結果如下(我結出了GCC的和VC++2003的對比):

[0] B1::_vptr ->

    [0] : B1::f()

    [1] : B1::f1()

    [2] : B1::Bf1()

    [3] : 0

[1] B1::ib1 : 11

[2] B1::cb1 : 1

[3] B::_vptr ->

    [1] : B::Bf()

    [2] : 0

[4] B::ib : 0

[5] B::cb : B

[6] NULL : 0

[0] B1::_vptr->

     [0] B1::f1()

     [1] B1::Bf1()

     [2] 0

[1] = 0x00454310 ç該位址取值後是-4

[2] B1::ib1 = 11

[3] B1::cb1 = 1

[4] = 0x00000000

[5] B::_vptr->

     [0] B1::f()

     [2] 0x00000000

這裡,大家可以自己對比一下。關于細節上,我會在後面一并再說。

下面的測試程式是看子類D的記憶體布局,同樣是VC++ 2003的(因為VC++和GCC的記憶體布局上有一些細節上的不同,而VC++的相對要清楚很多,是以這裡隻給出VC++的程式,GCC下的程式大家可以根據我給出的程式自己仿照着寫一個去試一試):

    cout << "     [0] ";    pFun(); //D::f1();

    cout << "     [1] ";    pFun(); //B1::Bf1();

    cout << "     [2] ";    pFun(); //D::Df();

    cout << "     [3] ";

    cout << pFun << endl;

    //cout << pVtab[4][2] << endl;

    cout <<  (int*)((&dd)+1) <<endl; //????

    cout << *((int*)(&dd)+2) <<endl; //B1::ib1

    cout << (char)*((int*)(&dd)+3) << endl; //B1::cb1

    //---------------------

    cout << "[4] D::B2::_vptr->" << endl;

    pFun = (Fun)pVtab[4][0];

    cout << "     [0] ";    pFun(); //D::f2();

    pFun = (Fun)pVtab[4][1];

    cout << "     [1] ";    pFun(); //B2::Bf2();

    pFun = (Fun)pVtab[4][2];

    cout << "[5] = 0x";

    cout << *((int*)(&dd)+5) << endl; // ???

    cout << "[6] B2::ib2 = ";

    cout << (int)*((int*)(&dd)+6) <<endl; //B2::ib2

    cout << "[7] B2::cb2 = ";

    cout << (char)*((int*)(&dd)+7) << endl; //B2::cb2

    cout << "[8] D::id = ";

    cout << *((int*)(&dd)+8) << endl; //D::id

    cout << "[9] D::cd = ";

    cout << (char)*((int*)(&dd)+9) << endl;//D::cd

    cout << "[10]  = 0x";

    cout << (int*)*((int*)(&dd)+10) << endl;

    cout << "[11] D::B::_vptr->" << endl;

    pFun = (Fun)pVtab[11][0];

    cout << "     [0] ";    pFun(); //D::f();

    pFun = (Fun)pVtab[11][1];

    cout << "     [1] ";    pFun(); //B::Bf();

    pFun = (Fun)pVtab[11][2];

    cout << "[12] B::ib = ";

    cout << *((int*)(&dd)+12) << endl; //B::ib

    cout << "[13] B::cb = ";

    cout << (char)*((int*)(&dd)+13) <<endl;//B::cb

 完整的測試代碼:

對象記憶體布局 (15)重複繼承鑽石型多重虛拟繼承結束語
對象記憶體布局 (15)重複繼承鑽石型多重虛拟繼承結束語

View Code

執行結果如下:

對象記憶體布局 (15)重複繼承鑽石型多重虛拟繼承結束語

下面給出運作後的結果(分VC++和GCC兩部份)

    [0] : D::f()

    [1] : D::f1()

    [3] : D::f2()

    [4] : D::Df()

    [5] : 1

[3] B2::_vptr ->

    [1] : D::f2()

    [2] : B2::Bf2()

[4] B2::ib2 : 12

[5] B2::cb2 : 2

[6] D::id : 100

[7] D::cd : D

[8] B::_vptr ->

[9] B::ib : 0

[10] B::cb : B

[11] NULL : 0

     [0] D::f1()

     [2] D::Df()

     [3] 00000000

[1] = 0x0013FDC4  ç 該位址取值後是-4

[4] D::B2::_vptr->

     [0] D::f2()

     [1] B2::Bf2()

     [2] 00000000

[5] = 0x4539260   ç 該位址取值後是-4

[6] B2::ib2 = 12

[7] B2::cb2 = 2

[8] D::id = 100

[9] D::cd = D

[10]  = 0x00000000

[11] D::B::_vptr->

[12] B::ib = 0

[13] B::cb = B

關于虛拟繼承的運作結果我就不畫圖了(前面的作圖已經讓我産生了很嚴重的厭倦感,是以就偷個懶了,大家見諒了)

在上面的輸出結果中,我用不同的顔色做了一些标明。我們可以看到如下的幾點:

1)無論是GCC還是VC++,除了一些細節上的不同,其大體上的對象布局是一樣的。也就是說,先是B1(黃色),然後是B2(綠色),接着是D(灰色),而B這個超類(青藍色)的執行個體都放在最後的位置。

2)關于虛函數表,尤其是第一個虛表,GCC和VC++有很重大的不一樣。但仔細看下來,還是VC++的虛表比較清晰和有邏輯性。

3)VC++和GCC都把B這個超類放到了最後,而VC++有一個NULL分隔符把B和B1和B2的布局分開。GCC則沒有。

4)VC++中的記憶體布局有兩個位址我有些不是很明白,在其中我用紅色标出了。取其内容是-4。接道理來說,這個指針應該是指向B類執行個體的記憶體位址(這個做法就是為了保證重複的父類隻有一個執行個體的技術)。但取值後卻不是。這點我目前還并不太清楚,還向大家請教。

5)GCC的記憶體布局中在B1和B2中則沒有指向B的指針。這點可以了解,編譯器可以通過計算B1和B2的size而得出B的偏移量。

C++這門語言是一門比較複雜的語言,對于程式員來說,我們似乎永遠摸不清楚這門語言背着我們在幹了什麼。需要熟悉這門語言,我們就必需要了解C++裡面的那些東西,需要我們去了解他後面的記憶體對象。這樣我們才能真正的了解C++,進而能夠更好的使用C++這門最難的程式設計語言。

繼續閱讀