laitimes

leetcode_c++:Minimum Size Subarray Sum (209)

题目

Given an array of n positive integers and a positive integer s, find the minimal length of a subarray of which the sum ≥ s. If there isn’t one, return 0 instead.

For example, given the array [2,3,1,2,4,3] and s = 7,

the subarray [4,3] has the minimal length under the problem constraint.

算法

O(N)

滑动窗口的形式

双指针

http://www.cnblogs.com/grandyang/p/4501934.html

这道题给定了我们一个数字,让我们求子数组之和大于等于给定值的最小长度,跟之前那道 Maximum Subarray 最大子数组有些类似,并且题目中要求我们实现O(n)和O(nlgn)两种解法,那么我们先来看O(n)的解法,我们需要定义两个指针left和right,分别记录子数组的左右的边界位置,然后我们让right向右移,直到子数组和大于等于给定值或者right达到数组末尾,此时我们更新最短距离,并且将left像右移一位,然后再sum中减去移去的值,然后重复上面的步骤,直到right到达末尾,且left到达临界位置,即要么到达边界,要么再往右移动,和就会小于给定值。代码如下

// O(n)
class Solution {
public:
    int minSubArrayLen(int s, vector<int>& nums) {
        if (nums.empty()) return ;
        int left = , right = , sum = , len = nums.size(), res = len + ;
        while (right < len) {
            while (sum < s && right < len) {
                sum += nums[right++];
            }
            while (sum >= s) {
                res = min(res, right - left);
                sum -= nums[left++];
            }
        }
        return res == len +  ?  : res;
    }
};
           

算法

二分钟查找

O(NlgN)

下面我们再来看看O(nlgn)的解法,这个解法要用到二分查找法,思路是,我们建立一个比原数组长一位的sums数组,其中sums[i]表示nums数组中[0, i - 1]的和,然后我们对于sums中每一个值sums[i],用二分查找法找到子数组的右边界位置,使该子数组之和大于sums[i] + s,然后我们更新最短长度的距离即可。代码如下:

// O(nlgn)
class Solution {
public:
    int minSubArrayLen(int s, vector<int>& nums) {
        int len = nums.size(), sums[len + ] = {}, res = len + ;
        for (int i = ; i < len + ; ++i) sums[i] = sums[i - ] + nums[i - ];
        for (int i = ; i < len + ; ++i) {
            int right = searchRight(i + , len, sums[i] + s, sums);
            if (right == len + ) break;
            if (res > right - i) res = right - i;
        }
        return res == len +  ?  : res;
    }
    int searchRight(int left, int right, int key, int sums[]) {
        while (left <= right) {
            int mid = (left + right) / ;
            if (sums[mid] >= key) right = mid - ;
            else left = mid + ;
        }
        return left;
    }
};
           
LeetCode(C++)