大数据hadoop入门案例4–OutputFormat接口输出不同文件中
此博客作为本文学习hadoop大数据内容,内容可能存在不够全面或者存在偏差。
文章目录
-
- 1.OutputFormat
- 2.代码
-
- 2.1Mapper
- 2.2Reducer
- 2.3OutputFormat
- 2.4LogLogRecordWriter
- 2.5Driver
- 3.输入+输出
-
- 3.1输入
- 3.2输出
1.OutputFormat
MapReducer有默认的文件输出流,但是当需要根据输入内容输出到不同的文件中,需要重新编写OutputFormat。
输出文件继承FileOutputFormat类,创建一个类继承RecordWriter,还需药传入getConfiguration。
2.代码

2.1Mapper
输入索引和value输出value和Null。
package com.root.logoutformat1;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class logmapper extends Mapper<LongWritable,Text,Text, NullWritable>{
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
context.write(value,NullWritable.get());
}
}
2.2Reducer
输入,输出都是value和Null。
package com.root.logoutformat1;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class reducer extends Reducer<Text, NullWritable,Text,NullWritable> {
@Override
protected void reduce(Text key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {
for (NullWritable value : values) {
context.write(key,value);
}
}
}
2.3OutputFormat
创建一个logoutput文件继承FileOutputFormat,向文件输出内容,但是还要实现RecordWriter类。
package com.root.logoutformat1;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class logoutput extends FileOutputFormat<Text, NullWritable> {
@Override
public RecordWriter<Text, NullWritable> getRecordWriter(TaskAttemptContext job) throws IOException, InterruptedException {
LogRecordWriter lrw =new LogRecordWriter(job);
return lrw;
}
}
2.4LogLogRecordWriter
在LogRecordWriter中继承RecordWriter,并创建输出文件的两条流,在write类中根据相关条件输出数据,close类中关闭流。
package com.root.logoutformat1;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import java.io.IOException;
public class LogRecordWriter extends RecordWriter<Text, NullWritable> {
private FSDataOutputStream baidu;
private FSDataOutputStream other;
public LogRecordWriter(TaskAttemptContext job) {
//创建两条流
try {
FileSystem fs = FileSystem.get(job.getConfiguration());
baidu = fs.create(new Path("E:\\testhadoop\\output\\outlogbaidu\\baidu.log"));
other = fs.create(new Path("E:\\testhadoop\\output\\outlogother1\\other1.log"));
} catch (IOException e) {
e.printStackTrace();
}
}
@Override
public void write(Text key, NullWritable value) throws IOException, InterruptedException {
//写文件
String log = key.toString();
if (log.contains("baidu")){
baidu.writeBytes(log);
}else {
other.writeBytes(log+'\n');
}
}
@Override
public void close(TaskAttemptContext context) throws IOException, InterruptedException {
//关流
IOUtils.closeStream(baidu);
IOUtils.closeStream(other);
}
}
2.5Driver
添加logoutput类
package com.root.logoutformat1;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.CombineTextInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class logdriver {
public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
//1.获取job
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
//2.设置jar包路径
job.setJarByClass(logdriver.class);
//3.关联mapper和reducer
job.setMapperClass(logmapper.class);
job.setReducerClass(reducer.class);
//4.设置最终输出的KV类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(NullWritable.class);
//5.设置map输出<k,v>类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(NullWritable.class);
job.setOutputFormatClass(logoutput.class);
//6.设置输入路径和输出路径
FileInputFormat.setInputPaths(job,new Path("E:\\testhadoop\\input\\inputlog"));
FileOutputFormat.setOutputPath(job,new Path("E:\\testhadoop\\output\\outputlog1"));
//7.提交job
boolean result =job.waitForCompletion(true);
System.exit(result ? 0:1);
}
}